湖南省長(zhǎng)沙一中2007-2008學(xué)年高三第八次月考數(shù)學(xué)(理科)試卷

本試卷共3大題21小題,全卷總分150分,考試時(shí)間120分鐘.

一、選擇題(本大題共10小題,每小題5分,共50分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的)

1.若集合中所含元素的個(gè)數(shù)是

    A. 0          B. 1           C. 0 或1         D.0 , 1或2   

試題詳情

2.在抽查某產(chǎn)品尺寸過(guò)程中,將其尺寸分成若干組,[a,b]是其中的一組已知該組上的直方圖的高為h,則該組的頻率為        

試題詳情

  A.     B.    C.        D.

試題詳情

3.定義在上的函數(shù)滿足可以是

試題詳情

  A.         B.

試題詳情

  C.         D.

試題詳情

4.函數(shù)的圖象經(jīng)過(guò)原點(diǎn),且它的導(dǎo)函數(shù)的圖象是如圖所示的一條直線,則的圖象不經(jīng)過(guò)     

A. 第一象限           B.第二象限 

C.第三象限           D.第四象限

 

     A.53         B.52          C.51          D.50

試題詳情

5.2008年北京奧運(yùn)會(huì)足球賽預(yù)計(jì)共有24個(gè)球隊(duì)參加比賽,第一輪分成6 個(gè)組進(jìn)行單循環(huán)賽在同一組的每?jī)蓚(gè)隊(duì)都要比賽),決出每個(gè)組的一、二名,然后又在剩下的12個(gè)隊(duì)中按積分取4個(gè)隊(duì)(不比賽),共計(jì)16個(gè)隊(duì)進(jìn)行淘汰賽來(lái)確定冠亞軍,則一共需比賽的場(chǎng)次為                                    

6. 已知在正方體中,點(diǎn)是線段(不包括線段端點(diǎn))上的一點(diǎn),則二面角的取值范圍是

試題詳情

試題詳情

7. 已知橢圓的左右頂點(diǎn)分別為為橢圓上任意一點(diǎn),且直線的斜率的取值范圍是,則直線的斜率的取值范圍是

試題詳情

   A.     B.    C.       D.

試題詳情

8.如圖,是判斷年份Y是否閏年的流程,則以下年份是閏年的是

   A .2009        B .2100

 C .1996        D. 2007

試題詳情

9.已知等差數(shù)列的前項(xiàng)的和為,且,,則過(guò)點(diǎn)的直線的一個(gè)方向向量的坐標(biāo)是

試題詳情

   A.       B.     C.       D.

試題詳情

10.已知曲線,點(diǎn)A(0,-2)及點(diǎn)B(3,a),從點(diǎn)A觀察點(diǎn)B,要使視線不被曲線C擋住,則實(shí)數(shù)a的取值范圍是(      ).

A.(4,+∞)    B.(-∞,4)  C.(10,+∞)  D.(-∞,10)

 

試題詳情

二、填空題(本大題共5小題,每小題5分,共25分.將答案填在題中的橫線上)

11.三個(gè)實(shí)數(shù)成等比數(shù)列,若,則的取值范圍是        .

試題詳情

12.)=                 

試題詳情

13.若以連續(xù)擲兩次骰子所得的點(diǎn)數(shù)x,y為點(diǎn)P的坐標(biāo),則點(diǎn)P落在圓的內(nèi)部的概率是     .

試題詳情

14.在實(shí)數(shù)的原有運(yùn)算法則中,我們補(bǔ)充定義新運(yùn)算“”如下:當(dāng) 時(shí),;當(dāng)時(shí),. 則函數(shù)的最大值等    于             。(“?”和“-”仍為通常的乘法和減法)

 

 

 

 

 

4

 

 

 

 

 

 

 

9

A

3

5

 

 

 

7

2

 

 

6

 

 

3

5

 

4

2

8

 

6

9

 

 

 

1

 

 

 

 

 

7

 

 

 

6

9

 

3

5

4

 

 

2

8

 

 

9

C

B

5

1

 

 

 

2

8

7

6

 

 

 

 

 

 

 

4

 

 

15 . 歐美等國(guó)家流行一種“數(shù)獨(dú)”推理游戲,其游戲規(guī)則如下:

  ①在9×9的九宮格子中,分成9個(gè)3×3的小九宮格,用1到9這9個(gè)數(shù)字填滿整個(gè)格子;

②每一行與每一列都有1到9的數(shù)字,每個(gè)小九 宮格里也有1到9的數(shù)字,并且一個(gè)數(shù)字在每行、每列及每個(gè)小九宮格里只能出現(xiàn)一次,既不能重復(fù)也不能少. 那么A處應(yīng)填入的數(shù)字為        ;B處應(yīng)填入的數(shù)字為      ;C處應(yīng)填入的數(shù)字為________.

 

試題詳情

三、解答題(本大題共6小題,共75分.解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟)

16.(本小題滿分12分)

試題詳情

已知函數(shù)R

試題詳情

(Ⅰ)求函數(shù)的最大值;

試題詳情

(Ⅱ)試說(shuō)明函數(shù)的圖像可由函數(shù)R的圖像經(jīng)過(guò)怎樣變換得到?

試題詳情

(Ⅰ) 

試題詳情

當(dāng),

試題詳情

時(shí),有最大值1.此時(shí)函數(shù)的值最大, 最大值為

試題詳情

 (Ⅱ) 將的圖像依次進(jìn)行如下變換:

試題詳情

1.把函數(shù)的圖像向下平移個(gè)單位長(zhǎng)度,得到函數(shù)的圖像;

試題詳情

2.把得到的函數(shù)圖像上各點(diǎn)橫坐標(biāo)縮短到原來(lái)的倍(縱坐標(biāo)不變),得到函數(shù)的圖像; 

試題詳情

3.將函數(shù)的圖像向右平移個(gè)單位長(zhǎng)度,

試題詳情

就得到函數(shù)的圖像. 

或按如下平移變換:

試題詳情

1.把函數(shù)的圖像向下平移個(gè)單位長(zhǎng)度,得到函數(shù)的圖像; 

試題詳情

2.將函數(shù)的圖像向右平移個(gè)單位長(zhǎng)度,就得到函數(shù)

試題詳情

的圖像.

試題詳情

3.把得到的函數(shù)圖像上各點(diǎn)橫坐標(biāo)縮短到原來(lái)的倍(縱坐標(biāo)不變),得到函數(shù)的圖像

試題詳情

17.(本小題滿分12分)

試題詳情

如圖,在棱長(zhǎng)為1的正方體中,是側(cè)棱上的一點(diǎn),.

試題詳情

(Ⅰ)試確定,使直線與平面所成角的正切值為;

試題詳情

(Ⅱ)在線段上是否存在一個(gè)定點(diǎn),使得對(duì)任意的,在平面上的射影垂直于,并證明你的結(jié)論.

試題詳情

18.(本小題滿分12分)

2008年中國(guó)北京奧運(yùn)會(huì)吉祥物由5個(gè)“中國(guó)福娃”  組成,分別叫貝貝、晶晶、歡歡、迎迎、妮妮,F(xiàn)有8個(gè)相同的盒子,每個(gè)盒子中放一個(gè)福娃,每種福娃的數(shù)量如下表:

福娃名稱

貝貝

晶晶

歡歡

迎迎

妮妮

數(shù)    量

2

2

2

1

1

從中隨機(jī)地選取5只.

(Ⅰ)求選取的5只福娃恰好組成完整“奧運(yùn)會(huì)吉祥物”的概率;

(Ⅱ)若完整地選取奧運(yùn)會(huì)吉祥物記100分;若選出的5只中僅差一種記80分;差兩種記60分;…….設(shè)ξ表示所得的分?jǐn)?shù),求ξ的分布列和期望值.(結(jié)果保留一位小數(shù))

試題詳情

19.(本題滿分13分)我國(guó)是水資源比較貧乏的國(guó)家,一些缺水的地區(qū)既開展節(jié)約用水的宣傳教育,又采用價(jià)格調(diào)控的手段來(lái)達(dá)到節(jié)約用水的目的.某市自來(lái)水收費(fèi)采取的是分段收費(fèi)的方法:用水不超過(guò)a噸的每噸2元;用水超過(guò)a噸而不超過(guò)b噸的,超過(guò)a噸的部分每噸4元;用水超過(guò)b噸的,則超出b噸的部分每噸6元;另外每戶每月收定額損耗費(fèi)c元,已知c不超過(guò)5元.

   該市一家庭今年一季度的用水量和支付費(fèi)用如下表所示:

月份

用水量

支付費(fèi)用

1

15

42

2

21

68

3

8

18

根據(jù)上表中的數(shù)據(jù),求a、b、c的值,并寫出用水量x噸與支付費(fèi)y元的函數(shù)關(guān)系式.

 

試題詳情

20.(本小題滿分13分)

試題詳情

如圖,在矩形ABCD中,已知A(2,0)、C(-2,2),點(diǎn)P在BC邊上移動(dòng),線段OP的垂直平分線交y軸于點(diǎn)E,點(diǎn)M滿足

(Ⅰ)求點(diǎn)M的軌跡方程;

試題詳情

(Ⅱ)已知點(diǎn)F(0,),過(guò)點(diǎn)F的直線l交點(diǎn)M的軌跡于Q、R兩點(diǎn),且求實(shí)數(shù)的取值范圍.

        

試題詳情

21. (本小題滿分13分)

試題詳情

設(shè)函數(shù)是在(0,+∞)上每一點(diǎn)處可導(dǎo)的函數(shù),若在x>0上恒成立.回答下列問(wèn)題:

試題詳情

(Ⅰ)求證:函數(shù)

試題詳情

(Ⅱ)當(dāng)時(shí),證明:.

試題詳情

(Ⅲ)已知不等式時(shí)恒成立,求證:

試題詳情

試題詳情

1.B.  集合是函數(shù)圖象上的點(diǎn)集,集合軸上的點(diǎn)集,中的點(diǎn)的橫坐標(biāo)都是0,由函數(shù)定義知函數(shù) 圖象與直線有且只有一個(gè)交點(diǎn).故選B.  

試題詳情

 2.  D. 由直方圖的意義即可直接求得結(jié)果.

試題詳情

3.  B.由知,函數(shù)是奇函數(shù),排除C,D. 由選B.

試題詳情

4. B.由導(dǎo)函數(shù)的圖象可知所以函數(shù)圖象的頂點(diǎn)在一象限,故函數(shù)的圖象不經(jīng)過(guò)第二象限.選B.

試題詳情

5. C. 六個(gè)小組每小組4個(gè)隊(duì), 進(jìn)行單循環(huán)賽的比賽場(chǎng)次一共有 6,16個(gè)隊(duì)進(jìn)行淘汰賽比賽場(chǎng)次一共有確定冠亞軍一共需比賽場(chǎng)次, 故選C. 

試題詳情

6.D.如圖所示,就是二面角的平面角,由圖知的取值范圍.

試題詳情

7. B. 依題意得,,則于是

試題詳情

在橢圓上,故,代入整理得又  

試題詳情

,解得

試題詳情

8. C. 因?yàn)?009于2007不能被4整除,先排除A.D.又2100不能被400整除,所以2100不是閏年,排除B.從而選C.

試題詳情

9. B.設(shè)首項(xiàng)為公差為,則。于是過(guò)點(diǎn)的直線斜率為則過(guò)點(diǎn)的直線的一個(gè)方向向量的坐標(biāo)應(yīng)選B. 

試題詳情

10. D. 易知點(diǎn)B在第一或第四象限.設(shè)過(guò)點(diǎn)A的直線與曲線C相切于點(diǎn), 則切線斜率為,則

試題詳情

      , 則切點(diǎn)為,要使視線不被C擋住,必須滿足

      故選D.

試題詳情

11.. ,解得  

試題詳情

   

試題詳情

  12..當(dāng)x→1時(shí),均無(wú)意義,應(yīng)約去因式x-1. ∵ ,

試題詳情

           ∴

試題詳情

13. .點(diǎn)P的坐標(biāo)有36種,而圓內(nèi)部點(diǎn)的坐標(biāo)必須滿足則點(diǎn)P落在圓的內(nèi)部的坐標(biāo)種數(shù)為8種,  

試題詳情

    所以由等可能事件的概率計(jì)算公式得所求概率為.

試題詳情

14.6.依題意得顯然函數(shù)的最大值為6.

試題詳情

15.  1, 3, 1. A處在9×9的九宮格子中的第2行,第3列,按照1到9的數(shù)字在每一行只能出現(xiàn)一次知,A處不能填入3,5,7,9;按照1到9的數(shù)字在每一列中只能出現(xiàn)一次知,A處不能填入2,4,6,8,綜合知A處只能填入1.同理分析知C處只能填入1.B處只能填入3.

試題詳情

16.∵. ( 3分)

試題詳情

(Ⅰ) M=2, ; ( 5分)

試題詳情

(Ⅱ) 的單調(diào)增區(qū)間為,(7分)

試題詳情

    的單調(diào)減區(qū)間為(8分)

試題詳情

(Ⅲ)∵, (10分)

試題詳情

      又,∴.(12分)

試題詳情

 17.解法一:(1)如圖:

試題詳情

試題詳情

試題詳情

.所以.又.

試題詳情

試題詳情

,即.

試題詳情

故當(dāng)時(shí),直線.

試題詳情

(Ⅱ)依題意,要在上找一點(diǎn),使得.可推測(cè)的中點(diǎn)即為所求的點(diǎn).因?yàn)?sub>,所以

試題詳情

,故.

試題詳情

從而

解法二:(1)建立如圖所示的空間直角坐標(biāo)系,

試題詳情

則A(1,0,0), B(1,1,0), P(0,1,m),C(0,1,0), D(0,0,0), B1(1,1,1), D1(0,0,1).

試題詳情

所以

試題詳情

又由的一個(gè)法向量.

試題詳情

設(shè)所成的角為,

試題詳情

試題詳情

依題意有:,解得.

試題詳情

故當(dāng)時(shí),直線.

試題詳情

(2)若在上存在這樣的點(diǎn),設(shè)此點(diǎn)的橫坐標(biāo)為,

試題詳情

.依題意,對(duì)任意的m要使D1Q在平面APD1上的射影垂直于AP.等價(jià)于

試題詳情

,即的中點(diǎn)時(shí),滿足題設(shè)的要求

試題詳情

 18.(I)由等可能事件的概率意義及概率計(jì)算公式得P==; 3分

  (II)ξ可取100,80,60三種值,且

試題詳情

          =;     4分

試題詳情

    7分

試題詳情

        9分

試題詳情

     的分布列為

ξ

100

80

60

P

9/14

3/14

    

 

 

 

 

試題詳情

      Eξ=78.6.……………………12分

 

試題詳情

19.

設(shè)用水量為x噸,支付費(fèi)用為y元.

試題詳情

試題詳情

     ……………………………………(3分)

試題詳情

若 a<8,則3月份至少需支付費(fèi)用

試題詳情

元,不合題設(shè).

試題詳情

..則1月份只需支付費(fèi)用

試題詳情

元,不合題設(shè).

試題詳情

                      ……………………………………(5分)

試題詳情

,則2月份需支付費(fèi)用

試題詳情

元,不合題設(shè).

試題詳情

,既.    ……………………………………(8分)

則由1月份和3月份的情況可得:

試題詳情

解得 ……………………………………(10分)

試題詳情

根據(jù)題意,則2月份只需支付費(fèi)用:

試題詳情

,不合題設(shè)..

由2月份情況可知:

試題詳情

試題詳情

解得 ……………………………………(12分)

試題詳情

…………………(13分)

 

試題詳情

20. (I)依題意,設(shè)P(t,2)(-2≤t≤2),M(x,y).

當(dāng)t=0時(shí),點(diǎn)M與點(diǎn)E重合,則M=(0,1);                              

試題詳情

當(dāng)t≠0時(shí),線段OP的垂直平分線方程為:

試題詳情

 

  顯然,點(diǎn)(0,1)適合上式 .故點(diǎn)M的軌跡方程為x2=-4(y-1)( -2≤x≤2)  

試題詳情

(II)設(shè)得x2+4k-2=0.

試題詳情

  設(shè)Q(x1,y1)、R(x2,y2),則            

試題詳情

,.消去x2,得.

試題詳情

試題詳情

解得.       

 

 

 

試題詳情

21.(Ⅰ)證明:由求導(dǎo)數(shù),

試題詳情

試題詳情

 由可知:在區(qū)間(0,+∞)上恒成立.

試題詳情

 從而

試題詳情

(Ⅱ)由(1)知,所以當(dāng)時(shí), 

試題詳情

于是

試題詳情

兩式相加得:.  

試題詳情

(Ⅲ)由(2)中可知: 恒有

試題詳情

()成立.

試題詳情

由數(shù)學(xué)歸納法可知:時(shí),

試題詳情

恒成立.

試題詳情

設(shè)函數(shù),則在時(shí),

試題詳情

………………………………………………(*)恒成立.

試題詳情

試題詳情

試題詳情

將(**)代入(*)中,可知:

試題詳情

…+

試題詳情

…+.

 

 

 

 

試題詳情


同步練習(xí)冊(cè)答案