題目列表(包括答案和解析)
證明:(1)當n=1時,顯然命題是正確的;(2)假設n=k時有<k+1,那么當n=k+1時,=(k+1)+1,所以當n=k+1時命題是正確的,由(1)(2)可知對于n∈N,命題都是正確的.以上證法是錯誤的,錯誤在于( )
A.當n=1時,驗證過程不具體
B.歸納假設的寫法不正確
C.從k到k+1的推理不嚴密
D.從k到k+1的推理過程沒有使用歸納假設
證明:(1)當n=1時,顯然命題是正確的;(2)假設n=k時有<k+1,那么當n=k+1時,(k+1)+1,所以當n=k+1時命題是正確的,由(1)、(2)可知對于(n∈N),命題都是正確的.以上證法是錯誤的,錯誤在于( )
A.當n=1時,驗證過程不具體
B.歸納假設的寫法不正確
C.從k到k+1的推理不嚴密
D.從k到k+1的推理過程沒有使用歸納假設
試判斷下面的證明過程是否正確:
用數學歸納法證明:
證明:(1)當時,左邊=1,右邊=1
∴當時命題成立.
(2)假設當時命題成立,即
則當時,需證
由于左端等式是一個以1為首項,公差為3,項數為的等差數列的前項和,其和為
∴式成立,即時,命題成立.根據(1)(2)可知,對一切,命題成立.
試判斷下面的證明過程是否正確:
用數學歸納法證明:
證明:(1)當時,左邊=1,右邊=1
∴當時命題成立.
(2)假設當時命題成立,即
則當時,需證
由于左端等式是一個以1為首項,公差為3,項數為的等差數列的前項和,其和為
∴式成立,即時,命題成立.根據(1)(2)可知,對一切,命題成立.
(1)當n=1時,S1=a1顯然成立.
(2)假設n=k時,公式成立,即
Sk=ka1+,
當n=k+1時,
Sk+1=a1+a2+…+ak+ak+1
=a1+(a1+d)+(a1+2d)+…+a1+(k-1)d+a1+kd
=(k+1)a1+(d+2d+…+kd)
=(k+1)a1+d
=(k+1)a1+d.
∴n=k+1時公式成立.
∴由(1)(2)可知對n∈N+,公式成立.
以上證明錯誤的是( )
A.當n取第一個值1時,證明不對
B.歸納假設寫法不對
C.從n=k到n=k+1的推理中未用歸納假設
D.從n=k到n=k+1的推理有錯誤
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com