.不合題設(shè)..由2月份情況可知: 查看更多

 

題目列表(包括答案和解析)

對于函數(shù),定義:若存在非零常數(shù),使函數(shù)對定義域內(nèi)的任意實數(shù),都滿足則稱函數(shù)是準(zhǔn)周期函數(shù),常數(shù)稱為函數(shù)的一個準(zhǔn)周期.如函數(shù)是以為一個準(zhǔn)周期且的準(zhǔn)周期函數(shù).

    (1) 試判斷是否是函數(shù)的準(zhǔn)周期,說明理由;

(2)證明函數(shù)是準(zhǔn)周期函數(shù),并求出它的一個準(zhǔn)周期和相應(yīng)的的值;

(3)請你給出一個準(zhǔn)周期函數(shù)(不同于題設(shè)和(2)中函數(shù)),指出它的一個準(zhǔn)周期和一些性質(zhì),并畫出它的大致圖像.

查看答案和解析>>

(此題8、9、10班做)(本小題滿分13分)

設(shè)數(shù)列的前項和為,對一切,點都在函數(shù) 的圖象上.

 (Ⅰ)求及數(shù)列的通項公式;

 (Ⅱ) 將數(shù)列依次按1項、2項、3項、4項循環(huán)地分為(),(,),(,,),(,,,);(),(),(,),(,,,);(),…,分別計算各個括號內(nèi)各數(shù)之,設(shè)由這些按原來括號的前后順序構(gòu)成的數(shù)列為,求的值;

(Ⅲ)令),求證:

 

查看答案和解析>>

(本小題滿分12分)

某興趣小組欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關(guān)系,他們分別到氣象局與某醫(yī)院抄錄了1至6月份每月10號的晝夜溫差情況與因患感冒而就診的人數(shù),得到如下資料:

日    期

1月10日

2月10日

3月10日

4月10日

5月10日

6月10日

晝夜溫差

10

11

13

12

8

6

就診人數(shù)

22

25

29

26

16

12

該興趣小組確定的研究方案是:先從這六組數(shù)據(jù)中選取2組,用剩下的4組數(shù)據(jù)求線性回歸方程,再用被選取的2組數(shù)據(jù)進行檢驗.

⑴ 求選取的2組數(shù)據(jù)恰好是相鄰兩個月的概率;

⑵ 若選取的是1月與6月的兩組數(shù)據(jù),請根據(jù)2至5月份的數(shù)據(jù),求出關(guān)于的線性回歸方程

⑶ 若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2人,則認為得到的線性回歸方程是理想的,試問該小組所得線性回歸方程是否理想?

 

查看答案和解析>>

(本小題滿分14分)

某興趣小組欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關(guān)系,他們分別到氣象局與某醫(yī)院抄錄了1至6月份每月10號的晝夜溫差情況與因患感冒而就診的人數(shù),得到如下資料:

日    期

1月10日

2月10日

3月10日

4月10日

5月10日

6月10日

晝夜溫差x(°C)

10

11

13

12

8

6

就診人數(shù)y(個)

22

25

29

26

16

12

    該興趣小組確定的研究方案是:先從這六組數(shù)據(jù)中選取2組,用剩下的4組數(shù)據(jù)求線性回歸方程,再用被選取的2組數(shù)據(jù)進行檢驗.

    (Ⅰ)求選取的2組數(shù)據(jù)恰好是相鄰兩個月的概率;(5分)

    (Ⅱ)若選取的是1月與6月的兩組數(shù)據(jù),請根據(jù)2至5月份的數(shù)據(jù),求出y關(guān)于x的線性回歸方程;(6分)

    (Ⅲ)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2人,則認為得到的線性回歸方程是理想的,試問該小組所得線性回歸方程是否理想?(3分)

    (參考公式: )

查看答案和解析>>

(本小題滿分14分)(注意:在試題卷上作答無效)
設(shè)數(shù)列的前項和為,對一切,點都在函數(shù) 的圖象上.
(Ⅰ)求及數(shù)列的通項公式;
(Ⅱ) 將數(shù)列依次按1項、2項、3項、4項循環(huán)地分為(),(,),(,),(,,);(),(),(,),(,,,);(),…,分別計算各個括號內(nèi)各數(shù)之和,設(shè)由這些和按原來括號的前后順序構(gòu)成的數(shù)列為,求的值;
(Ⅲ)令),求證:

查看答案和解析>>


同步練習(xí)冊答案