相關(guān)習(xí)題
 0  266441  266449  266455  266459  266465  266467  266471  266477  266479  266485  266491  266495  266497  266501  266507  266509  266515  266519  266521  266525  266527  266531  266533  266535  266536  266537  266539  266540  266541  266543  266545  266549  266551  266555  266557  266561  266567  266569  266575  266579  266581  266585  266591  266597  266599  266605  266609  266611  266617  266621  266627  266635  266669 

科目: 來源: 題型:

【題目】(本小題共13分)已知等差數(shù)列的前項和為a2=4, S5=35

)求數(shù)列的前項和

)若數(shù)列滿足,求數(shù)列的前n項和

查看答案和解析>>

科目: 來源: 題型:

【題目】(本小題共13分)已知函數(shù) 的最小正周期為

)求的值;

)求函數(shù)的單調(diào)區(qū)間及其圖象的對稱軸方程.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù).

(1)若曲線在點處的切線與直線垂直,求函數(shù)的單調(diào)區(qū)間;

(2)若對于任意都有成立,試求的取值范圍;

(3)記.當(dāng)時,函數(shù)在區(qū)間上有兩個零點,求實數(shù)的取值范圍。

查看答案和解析>>

科目: 來源: 題型:

【題目】某學(xué)生為了測試煤氣灶燒水如何節(jié)省煤氣的問題設(shè)計了一個實驗,并獲得了煤氣開關(guān)旋鈕旋轉(zhuǎn)的弧度數(shù)與燒開一壺水所用時間的一組數(shù)據(jù),且作了一定的數(shù)據(jù)處理(如下表),得到了散點圖(如下圖).

表中,.

1)根據(jù)散點圖判斷,哪一個更適宜作燒水時間關(guān)于開關(guān)旋鈕旋轉(zhuǎn)的弧度數(shù)的回歸方程類型?(不必說明理由)

2)根據(jù)判斷結(jié)果和表中數(shù)據(jù),建立關(guān)于的回歸方程;

3)若單位時間內(nèi)煤氣輸出量與旋轉(zhuǎn)的弧度數(shù)成正比,那么,利用第(2)問求得的回歸方程知為多少時,燒開一壺水最省煤氣?

附:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘法估計值分別為,

查看答案和解析>>

科目: 來源: 題型:

【題目】已知橢圓x軸負(fù)半軸交于,離心率.

1)求橢圓C的方程;

2)設(shè)直線與橢圓C交于兩點,連接AM,AN并延長交直線x=4兩點,若,直線MN是否恒過定點,如果是,請求出定點坐標(biāo),如果不是,請說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】底面為菱形的直四棱柱,被一平面截取后得到如圖所示的幾何體.,.

1)求證:;

2)求二面角的正弦值.

查看答案和解析>>

科目: 來源: 題型:

【題目】某校名學(xué)生參加軍事冬令營活動,活動期間各自扮演一名角色進(jìn)行分組游戲,角色按級別從小到大共種,分別為士兵、排長、連長、營長、團(tuán)長、旅長、師長、軍長和司令.游戲分組有兩種方式,可以人一組或者人一組.如果人一組,則必須角色相同;如果人一組,則人角色相同或者人為級別連續(xù)的個不同角色.已知這名學(xué)生扮演的角色有名士兵和名司令,其余角色各人,現(xiàn)在新加入名學(xué)生,將這名學(xué)生分成組進(jìn)行游戲,則新加入的學(xué)生可以扮演的角色的種數(shù)為________.

查看答案和解析>>

科目: 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知曲線的參數(shù)方程為為參數(shù)).以直角坐標(biāo)系的原點為極點,軸的正半軸為極軸建立坐標(biāo)系,曲線的極坐標(biāo)方程為.

(1)求的普通方程和的直角坐標(biāo)方程;

(2)若過點的直線交于,兩點,與交于,兩點,求的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】很多關(guān)于整數(shù)規(guī)律的猜想都通俗易懂,吸引了大量的數(shù)學(xué)家和數(shù)學(xué)愛好者,有些猜想已經(jīng)被數(shù)學(xué)家證明,如“費(fèi)馬大定理”,但大多猜想還未被證明,如“哥德巴赫猜想”、“角谷猜想”.“角谷猜想”的內(nèi)容是:對于每一個正整數(shù),如果它是奇數(shù),則將它乘以再加1;如果它是偶數(shù),則將它除以;如此循環(huán),最終都能夠得到.下圖為研究“角谷猜想”的一個程序框圖.若輸入的值為,則輸出i的值為(

A.B.C.D.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知在中,兩直角邊,的長分別為,以的中點為原點,所在直線為軸,以的垂直平分線為軸建立平面直角坐標(biāo)系,橢圓,為焦點,且經(jīng)過點.

1)求橢圓的方程;

2)直線相交于兩點,在軸上是否存在點,使得為等邊三角形,若存在,求出直線的方程;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案