科目: 來源: 題型:
【題目】(本小題共13分)已知等差數(shù)列的前項和為,a2=4, S5=35.
(Ⅰ)求數(shù)列的前項和;
(Ⅱ)若數(shù)列滿足,求數(shù)列的前n項和.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù).
(1)若曲線在點處的切線與直線垂直,求函數(shù)的單調(diào)區(qū)間;
(2)若對于任意都有成立,試求的取值范圍;
(3)記.當(dāng)時,函數(shù)在區(qū)間上有兩個零點,求實數(shù)的取值范圍。
查看答案和解析>>
科目: 來源: 題型:
【題目】某學(xué)生為了測試煤氣灶燒水如何節(jié)省煤氣的問題設(shè)計了一個實驗,并獲得了煤氣開關(guān)旋鈕旋轉(zhuǎn)的弧度數(shù)與燒開一壺水所用時間的一組數(shù)據(jù),且作了一定的數(shù)據(jù)處理(如下表),得到了散點圖(如下圖).
表中,.
(1)根據(jù)散點圖判斷,與哪一個更適宜作燒水時間關(guān)于開關(guān)旋鈕旋轉(zhuǎn)的弧度數(shù)的回歸方程類型?(不必說明理由)
(2)根據(jù)判斷結(jié)果和表中數(shù)據(jù),建立關(guān)于的回歸方程;
(3)若單位時間內(nèi)煤氣輸出量與旋轉(zhuǎn)的弧度數(shù)成正比,那么,利用第(2)問求得的回歸方程知為多少時,燒開一壺水最省煤氣?
附:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘法估計值分別為,
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓與x軸負(fù)半軸交于,離心率.
(1)求橢圓C的方程;
(2)設(shè)直線與橢圓C交于兩點,連接AM,AN并延長交直線x=4于兩點,若,直線MN是否恒過定點,如果是,請求出定點坐標(biāo),如果不是,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】某校名學(xué)生參加軍事冬令營活動,活動期間各自扮演一名角色進(jìn)行分組游戲,角色按級別從小到大共種,分別為士兵、排長、連長、營長、團(tuán)長、旅長、師長、軍長和司令.游戲分組有兩種方式,可以人一組或者人一組.如果人一組,則必須角色相同;如果人一組,則人角色相同或者人為級別連續(xù)的個不同角色.已知這名學(xué)生扮演的角色有名士兵和名司令,其余角色各人,現(xiàn)在新加入名學(xué)生,將這名學(xué)生分成組進(jìn)行游戲,則新加入的學(xué)生可以扮演的角色的種數(shù)為________.
查看答案和解析>>
科目: 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知曲線的參數(shù)方程為(為參數(shù)).以直角坐標(biāo)系的原點為極點,軸的正半軸為極軸建立坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求的普通方程和的直角坐標(biāo)方程;
(2)若過點的直線與交于,兩點,與交于,兩點,求的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】很多關(guān)于整數(shù)規(guī)律的猜想都通俗易懂,吸引了大量的數(shù)學(xué)家和數(shù)學(xué)愛好者,有些猜想已經(jīng)被數(shù)學(xué)家證明,如“費(fèi)馬大定理”,但大多猜想還未被證明,如“哥德巴赫猜想”、“角谷猜想”.“角谷猜想”的內(nèi)容是:對于每一個正整數(shù),如果它是奇數(shù),則將它乘以再加1;如果它是偶數(shù),則將它除以;如此循環(huán),最終都能夠得到.下圖為研究“角谷猜想”的一個程序框圖.若輸入的值為,則輸出i的值為( )
A.B.C.D.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知在中,兩直角邊,的長分別為和,以的中點為原點,所在直線為軸,以的垂直平分線為軸建立平面直角坐標(biāo)系,橢圓以,為焦點,且經(jīng)過點.
(1)求橢圓的方程;
(2)直線:與相交于,兩點,在軸上是否存在點,使得為等邊三角形,若存在,求出直線的方程;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com