本資料來源于《七彩教育網(wǎng)》http://www.7caiedu.cn

專題三《函數(shù)》

●中考點擊

    考點分析:

內(nèi)容

要求

1、函數(shù)的概念和平面直角坐標系中某些點的坐標特點

2、自變量與函數(shù)之間的變化關系及圖像的識別,理解圖像與變量的關系

3、一次函數(shù)的概念和圖像

4、一次函數(shù)的增減性、象限分布情況,會作圖

5、反比例函數(shù)的概念、圖像特征,以及在實際生活中的應用

6、二次函數(shù)的概念和性質(zhì),在實際情景中理解二次函數(shù)的意義,會利用二次函數(shù)刻畫實際問題中變量之間的關系并能解決實際生活問題

命題預測:函數(shù)是數(shù)形結合的重要體現(xiàn),是每年中考的必考內(nèi)容,函數(shù)的概念主要用選擇、填空的形式考查自變量的取值范圍,及自變量與因變量的變化圖像、平面直角坐標系等,一般占2%左右.一次函數(shù)與一次方程有緊密地聯(lián)系,是中考必考內(nèi)容,一般以填空、選擇、解答題及綜合題的形式考查,占5%左右.反比例函數(shù)的圖像和性質(zhì)的考查常以客觀題形式出現(xiàn),要關注反比例函數(shù)與實際問題的聯(lián)系,突出應用價值,3―6分;二次函數(shù)是初中數(shù)學的一個十分重要的內(nèi)容,是中考的熱點,多以壓軸題出現(xiàn)在試卷中.要求:能通過對實際問題情景分析確定二次函數(shù)的表達式,并體會二次函數(shù)的意義;會用描點法畫二次函數(shù)圖像,能叢圖像上分析二次函數(shù)的性質(zhì);會根據(jù)公式確定圖像的頂點、開口方向和對稱軸,并能解決實際問題.會求一元二次方程的近似值.

分析近年中考,尤其是課改實驗區(qū)的試題,預計2007年除了繼續(xù)考查自變量的取值范圍及自變量與因變量之間的變化圖像,一次函數(shù)的圖像和性質(zhì),在實際問題中考查對反比例函數(shù)的概念及性質(zhì)的理解.同時將注重考查二次函數(shù),特別是二次函數(shù)的在實際生活中應用.

●難點透視

例1反比例函數(shù)6ec8aac122bd4f6e的圖象經(jīng)過點(2,5),若點(1,n)在反比例函數(shù)的圖象上,則n的值是          

【考點要求】本題考查用反比例函數(shù)圖象上的點確定其解析式,并會用解析式確定點的坐標.

【思路點撥】因為反比例函數(shù)的圖象經(jīng)過點(2,5),所以可將點(2,5)的坐標代入6ec8aac122bd4f6e,求k就可確定解析式,再將點(1,n)代入解析式中求n的值.或直接根據(jù)反比例函數(shù)性質(zhì)即圖象上點的橫、縱坐標之積為常數(shù)k來求n,由題意得2×5=1×n,所以n=10.

【答案】填10.

【方法點撥】由反比例函數(shù)解析式6ec8aac122bd4f6e經(jīng)過變形,可以得到6ec8aac122bd4f6e,因為k是一個常數(shù),所以在反比例函數(shù)圖象上的所在的點的橫、縱坐標的乘積是一個定值,根據(jù)這個結論,很容易求出這類問題的結果.

6ec8aac122bd4f6e例2如圖3-1,已知點A的坐標為(1,0),點B在直線6ec8aac122bd4f6e上運動,當線段AB最短時,點B的坐標為

A. (0,0)     B. 6ec8aac122bd4f6e    C. 6ec8aac122bd4f6e    D. 6ec8aac122bd4f6e 

【考點要求】本題考查一次函數(shù)、線段、直角三角形等知識,數(shù)形結合是重要的數(shù)學方法之一.

當線段AB最短時AB⊥BO,又由點B在直線6ec8aac122bd4f6e上可知∠AOB=45°,且OA=1,過點B作x軸的垂線,根據(jù)等腰“三線合一”及直角三角形“斜邊的中線等于斜邊的一半”容易求得點B坐標為6ec8aac122bd4f6e

【答案】選B.

【誤區(qū)警示】部分學生能找出B點運動到何處線段AB最短,但卻無法求出具體坐標。突破方法:已知直線BO解析式,求點的坐標是根據(jù)兩直線相交,再求出AB直線的解析式,利用方程組求出交點坐標。

解題關鍵:互相垂直的兩直線解析式中,一次項系數(shù)互為倒數(shù),據(jù)此再結合點A的坐標可求出直線AB的解析式。

例3某出版社出版一種適合中學生閱讀的科普讀物,若該讀物首次出版印刷的印數(shù)不少于5000冊時,投入的成本與印數(shù)間的相應數(shù)據(jù)如下:

印數(shù)x(冊)

5000

8000

10000

15000

成績y(元)

28500

36000

41000

53500

(1)經(jīng)過對上表中數(shù)據(jù)的探究,發(fā)現(xiàn)這種讀物的投入成本y(元)是印數(shù)x(冊)的一次函數(shù).求這個一次函數(shù)的解析式(不要求寫出x的以值范圍);

(2)如果出版社投入成績48000元,那么能印讀物多少冊?

【考點要求】本題考查一次函數(shù)解析式的確定及其應用.

【思路點撥】(1)設所求一次函數(shù)解析式為6ec8aac122bd4f6e,則6ec8aac122bd4f6e,解得6ec8aac122bd4f6e,所以所求函數(shù)的關系式為6ec8aac122bd4f6e.

(2)因為6ec8aac122bd4f6e,所以x=12800

【答案】能印該讀物12800冊.

【方法點撥】關鍵要從題目所給表格中的數(shù)據(jù)選擇合適的一對值代入所設解析式,求出解析式。

例4若M6ec8aac122bd4f6e、N6ec8aac122bd4f6e、P6ec8aac122bd4f6e三點都在函數(shù)6ec8aac122bd4f6e(k<0)的圖象上,則6ec8aac122bd4f6e的大小關系為( )

A、6ec8aac122bd4f6e6ec8aac122bd4f6e6ec8aac122bd4f6e  B、6ec8aac122bd4f6e6ec8aac122bd4f6e6ec8aac122bd4f6e  C、6ec8aac122bd4f6e6ec8aac122bd4f6e6ec8aac122bd4f6e D、6ec8aac122bd4f6e6ec8aac122bd4f6e6ec8aac122bd4f6e 

【考點要求】本題考查反比例函數(shù)的性質(zhì)及用函數(shù)圖象比較函數(shù)值大小.

【誤區(qū)警示】部分學生不能正確理解反比例函數(shù)圖象的性質(zhì),容易錯誤的理解成“當 k<0時,圖象位于二、四象限,y隨x的增大而增大”。突破方法:不單純的根據(jù)性質(zhì)進行判斷,而是畫出圖象,結合草圖進行判斷。

例5一次函數(shù)6ec8aac122bd4f6e與反比例函數(shù)6ec8aac122bd4f6e在同一直角坐標系內(nèi)的大致圖象是

 

         A                   B                  C                    D

【考點要求】本題考查一次函數(shù)與反比例函數(shù)在同一坐標系內(nèi)圖象的判定.

試題詳情

【思路點撥】可假定一次函數(shù)6ec8aac122bd4f6e圖象正確,逐一判斷出k的取值范圍,再結合反比例函數(shù)及一次函數(shù)的圖象看是否會出現(xiàn)矛盾,若出現(xiàn)矛盾則該選項錯誤,

【答案】選A.

【方法點撥】少數(shù)學生因未能掌握這類問題的解法以致舉棋不定,無從下手。突破方法:所有這類判斷圖象可能性的問題的解法相近,關鍵就是以每一個選項中的某個圖象所反映的字母系數(shù)符號判斷出來,然后再看與另一個圖象是否相符。

試題詳情

6ec8aac122bd4f6e例6已知拋物線6ec8aac122bd4f6e的部分圖象如圖3-2所示,若y<0,則x的取值范圍是

A.-1<x<4              B.-1<x<3 

C.x<-1或 x>4         D.x<-1或 x>3

【考點要求】本題考查利用二次函數(shù)圖象解不等式.

試題詳情

【思路點撥】拋物線6ec8aac122bd4f6e的圖象上,當y=0時,對應的是拋物線與x軸的交點,坐標分別為(-1,0)、(3,0).當y<0時所對應的是x軸下方的部分,對應的x在-1與3之間,所以x的取值范圍是-1<x<3  ,

【答案】選B.

【方法點撥】本題解題關鍵在于正確理解y<0在圖象上反映出來的是對應x軸下面的部分,而這一段圖象對所應的自變量的取值范圍是-1至3,其中3根據(jù)拋物線的對稱軸以及拋物線與x軸左邊的交點坐標來確定的。

試題詳情

例7在直角坐標平面中,O為坐標原點,二次函數(shù)6ec8aac122bd4f6e的圖象與x軸的負半軸相交于點C,如圖3-3,點C的坐標為(0,-3),且BO=CO

(1)       求這個二次函數(shù)的解析式;

(2)       設這個二次函數(shù)的圖象的頂點為M,求AM的長.

【考點要求】本題考查二次函數(shù)解析式的確定。

【思路點撥】由題目條件,可用待定系數(shù)法求解析式

試題詳情

6ec8aac122bd4f6e(1)6ec8aac122bd4f6e,

試題詳情

6ec8aac122bd4f6e6ec8aac122bd4f6e,

試題詳情

6ec8aac122bd4f6e

試題詳情

6ec8aac122bd4f6e。

試題詳情

(2)6ec8aac122bd4f6e,

試題詳情

6ec8aac122bd4f6e.

 

試題詳情

【答案】(1)6ec8aac122bd4f6e;(2)6ec8aac122bd4f6e

【方法點撥】部分學生因為題目中沒有直接給出兩個點的坐標,因此在求待定系數(shù)時遇到困難。突破方法:由BO=CO且點C的坐標為(0,-3)可推知點B的坐標為(3,0),然后代入求解。

例8小明在銀行存入一筆零花錢,已知這種儲蓄的年利率為n%.若設到期后的本息和(本金+利息)為y(元),存入的時間為x(年),那么(1)下列那個圖像更能反映y與x之間的函數(shù)關系?從圖中你能看出存入的本金是多少元?一年后的本息和是多少元?

(2)根據(jù)(1)的圖象,求出y于x的函數(shù)關系式(不要求寫出自變量x的取值范圍),并求出兩年后的本息和.

【考點要求】本題考查用函數(shù)圖象表示實際生活問題及根據(jù)圖象求解析式.

試題詳情

【思路點撥】(1)圖乙反映y與x之間的函數(shù)關系從圖中可以看出存入的本金是100元一年后的本息和是102.25元

(2)設y與x的關系式為:y=100 n%x+100

試題詳情

把(1,102.25)代入上式,得n=2.25

試題詳情

∴y=2.25x+100

試題詳情

當x=2時,y=2.25×2+100=104.5(元)

試題詳情

【答案】(1)圖乙,存入的本金是100元,一年后的本息和是102.25元。(2)兩年后的和是104.5元。

試題詳情

【方法點撥】在選擇圖象時,應抓住起始錢數(shù)為100元,然后隨著時間推移逐步增加,到1年時總錢數(shù)變?yōu)?02.25元。確定好圖象后,根據(jù)圖象中的數(shù)據(jù),利用待定系數(shù)法,容易求一次函數(shù)解析式。

試題詳情

例9一次函數(shù)y=x+b與反比例函數(shù)6ec8aac122bd4f6e 圖像的交點為A(m,n),且m,n(m<n)

是關于x的一元二次方程kx2+(2k-7)x+k+3的兩個不相等的實數(shù)根,其中k為非負整數(shù),m,n為常數(shù).

(1)求k的值;

(2)求A的坐標與一次函數(shù)解析式.

【考點要求】本題考查二次函數(shù)與一元二次方程之間的關系,拋物線與x軸的交點橫坐標是其對應的一元二次方程的兩個根.

【思路點撥】(1)由方程有兩個不相等的實數(shù)根,得:

試題詳情

△=6ec8aac122bd4f6e=6ec8aac122bd4f6e6ec8aac122bd4f6e

又∵k為非負整數(shù)   ∴k=0,1

當k=0時,方程kx2+(2k-7)x+k+3=0不是一元二次方程,與題設矛盾

∴k=1

試題詳情

觀察圖①可以得出:直線=1與直線y=2x+1的交點P的坐標(1,3)就是方程組6ec8aac122bd4f6e的解,所以這個方程組的解為6ec8aac122bd4f6e

試題詳情

6ec8aac122bd4f6e在直角坐標系中,x≤1表示一個平面區(qū)域,即直線x=1以及它左側的部分,如圖3-4中,圖②;y≤2x+1也表示一個平面區(qū)域,即直線y=2x+1以及它下方的部分,如圖3-4中,圖③.

 

 

 

 

試題詳情

6ec8aac122bd4f6e

回答下列問題:

試題詳情

(1)在直角坐標系中,如圖3-5,用作圖象的方法求出方程組6ec8aac122bd4f6e的解;

試題詳情

6ec8aac122bd4f6e是方程組6ec8aac122bd4f6e的解.

(2)如陰影所示.

試題詳情

【答案】(1)6ec8aac122bd4f6e;(2)如圖3-5所示。

【方法點撥】本題的難點是對題目條件所給信息的理解與運用。突破方法:結合圖形反復研讀,理解不等式與它所對應的直線的關系,并能在圖象中用陰影表示出來。運用這一知識求解不等式組時,也就是要找出各不等式所表示的陰影的公共部分。

例11如圖3-6,已知O為坐標原點,∠AOB=30°,∠ABO=90°,且點A的坐標

為(2,0).

(1) 求點B的坐標;

(2) 若二次函數(shù)y=ax2+bx+c的圖象經(jīng)過A、B、O三點,求此二次函數(shù)的解析式;

(3) 在(2)中的二次函數(shù)圖象的OB段(不包括點O、B)上,是否存在一點C,使得四邊形ABCO的面積最大?若存在,求出這個最大值及此時點C的坐標;若不存在,請說明理由.

試題詳情

6ec8aac122bd4f6e【考點要求】本題考查求二次函數(shù)解析式,并探索拋物線上點的存在性,培養(yǎng)學生分析問題,解決問題的綜合能力.

 

試題詳情

【思路點撥】(1) 在Rt△OAB中,∵∠AOB=30°,∴ OB=6ec8aac122bd4f6e. 過點B作BD垂直于x軸,垂足為D,則  OD=6ec8aac122bd4f6e,BD=6ec8aac122bd4f6e,∴ 點B的坐標為(6ec8aac122bd4f6e) .

試題詳情

(2) 將A(2,0)、B(6ec8aac122bd4f6e)、O(0,0)三點的坐標代入y=ax2+bx+c,得6ec8aac122bd4f6e

試題詳情

解方程組,有  a=6ec8aac122bd4f6e,b=6ec8aac122bd4f6e,c=0.

試題詳情

∴ 所求二次函數(shù)解析式是 y=6ec8aac122bd4f6ex2+6ec8aac122bd4f6ex.

試題詳情

(3) 設存在點C(x , 6ec8aac122bd4f6ex2+6ec8aac122bd4f6ex)(其中0<x<6ec8aac122bd4f6e),使四邊形ABCO面積最大.

∵△OAB面積為定值,

∴只要△OBC面積最大,四邊形ABCO面積就最大.

過點C作x軸的垂線CE,垂足為E,交OB于點F,則

試題詳情

SOBC= SOCF +SBCF=6ec8aac122bd4f6e=6ec8aac122bd4f6e

試題詳情

而 |CF|=6ec8aac122bd4f6e=6ec8aac122bd4f6e

試題詳情

∴ SOBC=6ec8aac122bd4f6e .

試題詳情

∴ 當x=6ec8aac122bd4f6e時,△OBC面積最大,最大面積為6ec8aac122bd4f6e.

試題詳情

此時,點C坐標為(6ec8aac122bd4f6e),四邊形ABCO的面積為6ec8aac122bd4f6e.

試題詳情

【答案】(1)B6ec8aac122bd4f6e;(2)y=6ec8aac122bd4f6ex2+6ec8aac122bd4f6ex;(3)存在點C坐標為(6ec8aac122bd4f6e),此時四邊形ABCO的面積最大為6ec8aac122bd4f6e

【方法點撥】(1)解題方法較為靈活,容易解決。(2)因為已具備圖象上三點坐標,可直接設為一般式,代入三點求解;也可以設為兩根式,再代入點B坐標求解。(3)關鍵要抓住四邊形ABCO的面積由兩部分組成,其中△OAB面積為定值,因此要四邊形面積最大,問題轉(zhuǎn)化為判斷△OBC面積是否存在最大值。

   

 

●難點突破方法總結

函數(shù)在中考中占有很重要的地位,是中考必考內(nèi)容之一。課改實驗區(qū)的函數(shù)綜合題其背景材料更加豐富,更加貼近生活,更加注重對解決問題的思維過程的考查,但其計算量和書寫量與非課改區(qū)相比,又有較大幅度的下降。在完成函數(shù)問題方面,要注重以下幾點。

試題詳情

1.正確理解和掌握各種函數(shù)的概念、圖象和性質(zhì),這是解決所有函數(shù)問題的基本前提。

試題詳情

2.應用函數(shù)性質(zhì)解決相關問題時,要樹立數(shù)形結合思想,借助函數(shù)的圖象和性質(zhì),形象、直觀地解決有關不等式、最值、方程的解、以及圖形的位置關系等問題。

試題詳情

3.利用轉(zhuǎn)化思想,通過求點的坐標,來達到求線段長度;通過求線段的長度求點的坐標;通過一元二次方程根的判別式及根與系數(shù)的關系來解決拋物線與x軸交點問題。

試題詳情

4.探究性問題的解題思路沒有固定的模式和套路,解答相關問題時,可從以下幾個角度考慮:(1)特殊點法;(2)分類討論法;(3)類比猜測法等,最重要的還是要結合具體題目的特點進行分析,靈活選擇和運用適當?shù)臄?shù)學思想及解題技巧。

●拓展演練

試題詳情

一、填空題

1. 如果正比例函數(shù)及反比例函數(shù)圖象都經(jīng)過點(-2,4),則正比例函數(shù)的解析式為              ,反比例函數(shù)的解析式為                  

試題詳情

2. 拋物線6ec8aac122bd4f6e的頂點坐標是      ,對稱軸是     

試題詳情

3.二次函數(shù)6ec8aac122bd4f6e軸有     個交點,交點坐標是           

試題詳情

4.已知6ec8aac122bd4f6e是整數(shù),且一次函數(shù)6ec8aac122bd4f6e的圖象不過第二象限,則m=       .

試題詳情

5.直線y =6ec8aac122bd4f6e與兩坐標軸圍成的三角形面積是                 .

試題詳情

6.試寫出圖象位于第二象限與第四象限的一個反比例函數(shù)解析式                .

試題詳情

7. 反比例函數(shù)6ec8aac122bd4f6e的圖象經(jīng)過點(2,-1),則k的值為            

試題詳情

6ec8aac122bd4f6e8. 雙曲線6ec8aac122bd4f6e和一次函數(shù)y=ax+b的圖象的兩個交點分別是A(-1,-4),B(2,m),則a+2b=____________.

試題詳情

9. 已知反比例函數(shù)6ec8aac122bd4f6e,其圖象在第一、第三象限內(nèi),則k的值可為         .(寫出滿足條件的一個k的值即可)

10.在電壓一定的情況下,電流I(A)與電阻R(Ω)之間滿足如圖所示的反比例函數(shù)關系,則I關于R的函數(shù)表達式為                   

試題詳情

二、選擇題

11. 直線y=kx+1一定經(jīng)過點(    )

A.(1,0)        B.(1,k)        C.(0,k)          D.(0,1)

試題詳情

6ec8aac122bd4f6e12. 如圖,在△ABC中,點D在AB上,點E在AC上,若∠ADE=∠C,且AB=5,AC=4,AD=x,AE=y,則y與x的關系式是(    )

試題詳情

   A.y=5x           B.y=6ec8aac122bd4f6ex          C.y=6ec8aac122bd4f6ex            D.y=6ec8aac122bd4f6ex

試題詳情

13. y=(x-1)2+2的對稱軸是直線。ā 

A.x=-1               B.x=1                C.y=-1               D.y=1

試題詳情

6ec8aac122bd4f6e14. 如圖,△ABC和△DEF是兩個形狀大小完全相同的等腰直角三角形,∠B=∠DEF=90°,點B、C、E、F在同一直線上.現(xiàn)從點C、E重合的位置出發(fā),讓△ABC在直線EF上向右作勻速運動,而△DEF的位置不動.設兩個三角形重合部分的面積為6ec8aac122bd4f6e,運動的距離為6ec8aac122bd4f6e.下面表示6ec8aac122bd4f6e6ec8aac122bd4f6e的函數(shù)關系式的圖象大致是(    )

 

試題詳情

6ec8aac122bd4f6e 

 

 

 

試題詳情

15.點P(a,b)在第二象限,則點Q(a-1,b+1)在(    )

A.第一象限      B.第二象限     C.第三象限     D.第四象限

試題詳情

16.下列函數(shù)中,自變量的取值范圍選取錯誤的是(    )

試題詳情

          A.6ec8aac122bd4f6e中, 取全體實數(shù)     6ec8aac122bd4f6e   B.6ec8aac122bd4f6e中, 6ec8aac122bd4f6e的實數(shù)

試題詳情

          C.6ec8aac122bd4f6e中, 6ec8aac122bd4f6e的實數(shù)     D.6ec8aac122bd4f6e中, 6ec8aac122bd4f6e的實數(shù)

試題詳情

17.當路程s一定時,速度v與時間t之間的函數(shù)關系是(  )

A.反比例函數(shù)     B.正比例函數(shù)   C.一次函數(shù)    D.二次函數(shù)

試題詳情

18.若二次函數(shù)6ec8aac122bd4f6e,當x取6ec8aac122bd4f6e時,函數(shù)值相等,則當x取6ec8aac122bd4f6e時,函數(shù)值為(    )

A.a(chǎn)+c             B.a(chǎn)-c           C.-c           D.c

試題詳情

19.拋物線6ec8aac122bd4f6e的一部分如圖所示,該拋物線在6ec8aac122bd4f6e軸右側部分與軸交點的坐標是

試題詳情

A.(6ec8aac122bd4f6e,0)       B.(1,0)      C.(2,0)      D.(3,0)

試題詳情

20.拋物線6ec8aac122bd4f6e的圖角如圖,則下列結論:①6ec8aac122bd4f6e>0;②6ec8aac122bd4f6e;③6ec8aac122bd4f6e<0;④6ec8aac122bd4f6e<0.其中正確的結論是(      )

A.①②            B.②③          C.②④         D.③④

試題詳情

6ec8aac122bd4f6e
6ec8aac122bd4f6e
 

 

 

 

 

 

 

 

 

 

 

 

試題詳情

三、解答題

6ec8aac122bd4f6e21.某產(chǎn)品每件成本10元,試銷階段每件產(chǎn)品的日銷售價6ec8aac122bd4f6e(元)與產(chǎn)品的日銷售量6ec8aac122bd4f6e(件)之間的關系如下表:

試題詳情

6ec8aac122bd4f6e(元)

15

20

25

30

試題詳情

6ec8aac122bd4f6e(件)

25

20

15

10

 

試題詳情

(1)在草稿紙上描點,觀察點的頒布,建立6ec8aac122bd4f6e6ec8aac122bd4f6e的恰當函數(shù)模型.

(2)要使每日的銷售利潤最大,每件產(chǎn)品的銷售價應定為多少元?此時每日銷售利潤是多少元?

 

 

試題詳情

22.如圖,在平面直角坐標系中,正方形AOCB的邊長為6,O為坐標原點,邊OC在x軸的正半軸上,邊OA在y軸的正半軸上,E是邊AB上的一點,直線EC交y軸于F,且SFAE∶S四邊形AOCE=1∶3.

(1) 求出點E的坐標;     

(2)求直線EC的函數(shù)解析式.

 

 

試題詳情

23.某廠從2001年起開始投入技術改進資金,經(jīng)技術改進后,其產(chǎn)品的生產(chǎn)成本不斷降低,具體數(shù)據(jù)如下表:

年   度

2001

2002

2003

2004

投入技改資金z(萬元)

試題詳情

2.5

3

4

試題詳情

4.5

產(chǎn)品成本(萬元/件)

試題詳情

7.2

6

試題詳情

4.5

4

(1)請你認真分析表中數(shù)據(jù),從你所學習過的一次函數(shù)、二次函數(shù)和反比例函數(shù)中確定哪種函數(shù)能表示其變化規(guī)律,說明確定是這種函數(shù)而不是其它函數(shù)的理由,并求出它的解析式;

(2)按照這種變化規(guī)律,若2005年已投人技改資金5萬元.

① 預計生產(chǎn)成本每件比2004年降低多少萬元?

試題詳情

6ec8aac122bd4f6e② 如果打算在2005年把每件產(chǎn)品成本降低到3.2萬元,則還需投入技改資金多少萬元(結果精確到0.01萬元)?

 

 

 

 

 

 

試題詳情

24.已知函數(shù)6ec8aac122bd4f6e

(1)求函數(shù)的最小值;

(2)給定坐標系中,畫出函數(shù)的圖象;

試題詳情

(3)設函數(shù)圖象與x軸的交點為A(x1,0)、B(x2,0),求6ec8aac122bd4f6e的值.

 

 

 

 

 

 

試題詳情

25.某校的圍墻上端由一段段相同的凹曲拱形柵欄組成,如圖所示,其拱形圖形為拋物線的一部分,柵欄的跨徑AB間,按相同的間距0.2米用5根立柱加固,拱高OC為0.6米

試題詳情

6ec8aac122bd4f6e(1)以O為原點,OC所在的直線為y軸建立平面直角坐標系,請根據(jù)以上的數(shù)據(jù),求出拋物線y=ax2的解析式;

試題詳情

(2)計算一段柵欄所需立柱的總長度.(精確到0.1米)

 

 

 

 

 

 

 

試題詳情

26.如圖,用長為18 m的籬笆(虛線部分),兩面靠墻圍成矩形的苗圃.

試題詳情

6ec8aac122bd4f6e(1)設矩形的一邊為6ec8aac122bd4f6e(m),面積為6ec8aac122bd4f6e(m2),求6ec8aac122bd4f6e

試題詳情

6ec8aac122bd4f6e的函數(shù)關系式,并寫出自變量6ec8aac122bd4f6e的取值范圍;

試題詳情

(2)當6ec8aac122bd4f6e為何值時,所圍苗圃的面積最大,最大面積是多少?

 

 

 

 

 

 

 

 

●習題答案

試題詳情

一、填空題

1. 6ec8aac122bd4f6e(提示:設正比例函數(shù)與反比例函數(shù)分別為6ec8aac122bd4f6e,把點(-2,4)代入)

試題詳情

2.(-2,5),x=-2(提示:根據(jù)頂點式6ec8aac122bd4f6e,頂點為6ec8aac122bd4f6e,對稱軸為6ec8aac122bd4f6e

試題詳情

3.2,(-2,0)、(1,0)(提示:把y=0代入解析式得6ec8aac122bd4f6e,解之得6ec8aac122bd4f6e

試題詳情

4.-3(提示:由題意,一次函數(shù)圖象過一、三、四象限,所以6ec8aac122bd4f6e,解得6ec8aac122bd4f6e

5.6ec8aac122bd4f6e(提示:直線與x軸交點坐標為(-2,0),與y軸交點坐標為(0,-6ec8aac122bd4f6e),所以圍成的三角形面積為6ec8aac122bd4f6e

試題詳情

6.6ec8aac122bd4f6e(提示:答案不唯一,只需滿足k<0)

試題詳情

7.-2(提示:由6ec8aac122bd4f6e可得6ec8aac122bd4f6e,把點(2,-1)代入即可)

試題詳情

8.-2(提示:把A(-1,-4)代入6ec8aac122bd4f6e求得k=4,再把B(2,m)代入6ec8aac122bd4f6e求得m=2,再把A(-1,-4),B(2,2)代入y=ax+b,可求得a=2,b=-2)

試題詳情

9. 1(提示:答案不唯一,只需滿足6ec8aac122bd4f6e<0即可)

試題詳情

10.6ec8aac122bd4f6e(提示:設6ec8aac122bd4f6e,把(2,3)代入,求得k=6)

試題詳情

二、選擇題

11.D(提示:把各選項的坐標分別代入)

試題詳情

12.C(提示:根據(jù)題意,△AED∽△ABC,所以6ec8aac122bd4f6e6ec8aac122bd4f6e,所以6ec8aac122bd4f6e

試題詳情

13. B(提示:根據(jù)頂點式6ec8aac122bd4f6e,對稱軸為6ec8aac122bd4f6e

試題詳情

14. C(提示:由題意6ec8aac122bd4f6e,y的變化規(guī)律為先由小變大,再由大變小,且拋物線的開口均向上)

試題詳情

15. B(提示:P(a,b)在第二象限,所以a<0,b>0,所以a-1<0,b+1>0,因此點Q(a-1,b+1)在第二象限)

試題詳情

16.D(提示:D項中分母不能為0,所以應取的x>-3實數(shù))

試題詳情

17.A(提示:由題意6ec8aac122bd4f6e,當s一定時,速度v是時間t的反比例函數(shù))

試題詳情

18.D(提示:二次函數(shù)6ec8aac122bd4f6e對稱軸為y軸,當x取6ec8aac122bd4f6e時函數(shù)值相等,所以6ec8aac122bd4f6e關于對稱軸對稱,所以6ec8aac122bd4f6e,把x=0代入解析式6ec8aac122bd4f6e得y=c)

試題詳情

19.B(提示:由圖象可看出拋線對稱軸為x=-1,與x軸的一個交點為x=-3,則另一點與之關于x=-1對稱,為x=1,所以另一點為(1,0))

試題詳情

20.B(提示:由圖象可知6ec8aac122bd4f6e>0,6ec8aac122bd4f6e>0,6ec8aac122bd4f6e<0,所以6ec8aac122bd4f6e<0,所以6ec8aac122bd4f6e<0;又因為點(1,2)在拋物線上,把(1,2)代入解析式可得6ec8aac122bd4f6e;由圖象可知,當x=-1時,對應的y在x軸下方,所以6ec8aac122bd4f6e<0;而拋物線與x軸有兩個交點,故6ec8aac122bd4f6e>0)

試題詳情

三、解答題

21.解:(1) 經(jīng)觀察發(fā)現(xiàn)各點分布在一條直線上,∴設6ec8aac122bd4f6e (k≠0)

試題詳情

用待定系數(shù)法求得6ec8aac122bd4f6e

試題詳情

(2)設日銷售利潤為z ,則6ec8aac122bd4f6e=6ec8aac122bd4f6e

當x=25時,z最大為225,

所以當每件產(chǎn)品的銷售價定為25元時,日銷售利潤最大為225元.

 

試題詳情

22.解:(1) ∵SFAE∶S四邊形AOCE=1∶3,      ∴SFAE∶SFOC=1∶4,

∵四邊形AOCB是正方形,      ∴AB∥OC,     ∴△FAE∽△FOC,∴AE∶OC=1∶2,  

∵OA=OC=6,   ∴AE=3,  ∴點E的坐標是(3,6)

(2) 設直線EC的解析式是y=kx+b,

∵直線y=kx+b過E(3,6)和C(6,0)

∴,解得:

∴直線EC的解析式是y=-2x+12

試題詳情

23.解:(1)設其為一次函數(shù),解析式為6ec8aac122bd4f6e

試題詳情

6ec8aac122bd4f6e時,6ec8aac122bd4f6e;  當6ec8aac122bd4f6e=3時,6ec8aac122bd4f6e6.

試題詳情

6ec8aac122bd4f6e    解得6ec8aac122bd4f6e6ec8aac122bd4f6e  ∴一次函數(shù)解析式為6ec8aac122bd4f6e

試題詳情

6ec8aac122bd4f6e時,6ec8aac122bd4f6e代人此函數(shù)解析式,左邊≠右邊.   ∴其不是一次函數(shù).

同理.其也不是二次函數(shù).    

試題詳情

設其為反比例函數(shù).解析式為6ec8aac122bd4f6e.  當6ec8aac122bd4f6e時,6ec8aac122bd4f6e,

試題詳情

可得6ec8aac122bd4f6e       解得6ec8aac122bd4f6e    ∴反比例函數(shù)是6ec8aac122bd4f6e

試題詳情

驗證:當6ec8aac122bd4f6e=3時,6ec8aac122bd4f6e6ec8aac122bd4f6e,符合反比例函數(shù).

試題詳情

同理可驗證6ec8aac122bd4f6e4時,6ec8aac122bd4f6e6ec8aac122bd4f6e時,6ec8aac122bd4f6e成立.

試題詳情

可用反比例函數(shù)6ec8aac122bd4f6e表示其變化規(guī)律.

試題詳情

(2)解:①當6ec8aac122bd4f6e5萬元時,,6ec8aac122bd4f6e.     6ec8aac122bd4f6e(萬元),

試題詳情

∴生產(chǎn)成本每件比2004年降低0.4萬元.

試題詳情

②當6ec8aac122bd4f6e時,6ec8aac122bd4f6e.     ∴6ec8aac122bd4f6e

試題詳情

6ec8aac122bd4f6e6ec8aac122bd4f6e(萬元)

試題詳情

∴還約需投入0.63萬元.

試題詳情

6ec8aac122bd4f6e24.解:(1)∵6ec8aac122bd4f6e,

試題詳情

∴當x=2時,6ec8aac122bd4f6e.  

(2)如圖,圖象是一條開口向上的拋物線.

對稱軸為x=2,頂點為(2,-3).

(3)由題意,x1,x2,是方程x2-4x+1=0的兩根,

試題詳情

∴x1+x2=4,x1x2=1. 

試題詳情

6ec8aac122bd4f6e

試題詳情

25.解:(1) 由已知:OC=0.6,AC=0.6,得點A的坐標為(0.6,0.6),

試題詳情

代入y=ax2,得a=6ec8aac122bd4f6e,        ∴拋物線的解析式為y=6ec8aac122bd4f6ex2.

試題詳情

(2)點D1,D2的橫坐標分別為0.2,0.4,

試題詳情

 代入y=6ec8aac122bd4f6ex2,得點D1,D2的縱坐標分別為:y1=6ec8aac122bd4f6e×0.22≈0.07,y2=6ec8aac122bd4f6e×0.42≈0.27,

試題詳情

 ∴立柱C1D1=0.6-0.07=0.53,C2D2=0.6-0.27=0.33,

由于拋物線關于y軸對稱,柵欄所需立柱的總長度為:

試題詳情

2(C1D1+ C2D2)+OC=2(0.53+0.33)+0.6≈2.3.

試題詳情

26.解:(1) 由已知,矩形的另一邊長為6ec8aac122bd4f6e6ec8aac122bd4f6e

試題詳情

6ec8aac122bd4f6e= 6ec8aac122bd4f6e=6ec8aac122bd4f6e,自變量6ec8aac122bd4f6e的取值范圍是0<6ec8aac122bd4f6e<18.  

試題詳情

(2)∵  6ec8aac122bd4f6e=6ec8aac122bd4f6e=6ec8aac122bd4f6e 

試題詳情

∴ 當6ec8aac122bd4f6e=9時(0<9<18),苗圃的面積最大,最大面積是81 6ec8aac122bd4f6e     

試題詳情

又解:  ∵  6ec8aac122bd4f6e=-1<0,6ec8aac122bd4f6e有最大值,        

試題詳情

∴  當 6ec8aac122bd4f6e=6ec8aac122bd4f6e時(0<9<18), 6ec8aac122bd4f6e6ec8aac122bd4f6e) 

 

 

 

 

本資料由《七彩教育網(wǎng)》www.7caiedu.cn 提供!

試題詳情


同步練習冊答案