【題目】為了研究某種細(xì)菌的繁殖個(gè)數(shù)y隨天數(shù)x的變化情況,收集數(shù)據(jù)如下:

天數(shù)x

1

2

3

4

5

6

繁殖個(gè)數(shù)y

6

12

25

49

95

190

1)根據(jù)散點(diǎn)圖,判斷哪一個(gè)適合作為y關(guān)于x的回歸方程類型;(給出判斷即可,不用說(shuō)明理由)

2)根據(jù)(1)中的判斷及表中數(shù)據(jù),求y關(guān)于x的回歸方程參考數(shù)據(jù):,,,

參考公式:

【答案】1適合作為y關(guān)于x的回歸方程類型;(2.

【解析】

(1)通過(guò)散點(diǎn)圖確定兩個(gè)變量間的回歸關(guān)系,確定回歸方程的類型;

(2)利用換元將指數(shù)型函數(shù)轉(zhuǎn)化為線性方程,然后用最小二乘法求出線性回歸方程,最終求出y關(guān)于x的回歸方程.

(1)作出散點(diǎn)圖如圖1所示:

由散點(diǎn)圖可以看出,適合作為y關(guān)于x的回歸方程類型.

(2),,則.

變換后的樣本數(shù)據(jù)如下表:

x

1

2

3

4

5

6

z

相應(yīng)的散點(diǎn)圖如圖2所示:

從圖2可以看出,變換后的樣本點(diǎn)分布在一條直線附近,因此可以用線性回歸方程來(lái)擬合.

,.

,

,故線性回歸方程為.

,因此細(xì)菌的繁殖個(gè)數(shù)y關(guān)于時(shí)間x的非線性回歸方程為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】“工資條里顯紅利,個(gè)稅新政人民心”,隨著2019年新年鐘聲的敲響,我國(guó)自1980年以來(lái),力度最大的一次個(gè)人所得稅(簡(jiǎn)稱個(gè)稅)改革迎來(lái)了全面實(shí)施的階段,某從業(yè)者為了解自己在個(gè)稅新政下能享受多少稅收紅利,繪制了他在26歲~35歲(2009年~2018年)之間各月的月平均收入(單位:千元)的散點(diǎn)圖:

(1)由散點(diǎn)圖知,可用回歸模型擬合的關(guān)系,試根據(jù)有關(guān)數(shù)據(jù)建立關(guān)于的回歸方程;

(2)如果該從業(yè)者在個(gè)稅新政下的專項(xiàng)附加扣除為3000元/月,試?yán)茫?)的結(jié)果,將月平均收入為月收入,根據(jù)新舊個(gè)稅政策,估計(jì)他36歲時(shí)每個(gè)月少繳交的個(gè)人所得稅.

附注:

參考數(shù)據(jù),,,,,其中;取,

參考公式:回歸方程中斜率和截距的最小二乘估計(jì)分別為,

新舊個(gè)稅政策下每月應(yīng)納稅所得額(含稅)計(jì)算方法及稅率表如下:

舊個(gè)稅稅率表(個(gè)稅起征點(diǎn)3500元)

新個(gè)稅稅率表(個(gè)稅起征點(diǎn)5000元)

稅繳級(jí)數(shù)

每月應(yīng)納稅所得額(含稅)

=收入-個(gè)稅起征點(diǎn)

稅率

(%)

每月應(yīng)納稅所得額(含稅)

=收入一個(gè)稅起征點(diǎn)-專項(xiàng)附加扣除

稅率

(%)

1

不超過(guò)1500元的部分

3

不超過(guò)3000元的部分

3

2

超過(guò)1500元至4500元的部分

10

超過(guò)3000元至12000元的部分

10

3

超過(guò)4500元至9000元的部分

20

超過(guò)12000元至25000元的部分

20

4

超過(guò)9000元至35000元的部分

25

超過(guò)25000元至35000元的部分

25

5

超過(guò)35000元155000元的部分

30

超過(guò)35000元至55000元的部分

30

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】8名運(yùn)動(dòng)員中選4人參加4×100米接力賽,在下列條件下,各有多少種不同的排法?(用數(shù)字結(jié)尾)
1)甲、乙兩人必須跑中間兩棒;
2)若甲、乙兩人只有一人被選且不能跑中間兩棒;
3)若甲、乙兩人都被選且必須跑相鄰兩棒.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,橢圓的左、右焦點(diǎn)分別為軸,直線軸于點(diǎn),,為橢圓上的動(dòng)點(diǎn),的面積的最大值為1.

(1)求橢圓的方程;

(2)過(guò)點(diǎn)作兩條直線與橢圓分別交于且使軸,如圖,問(wèn)四邊形的兩條對(duì)角線的交點(diǎn)是否為定點(diǎn)?若是,求出定點(diǎn)的坐標(biāo);若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱,其中為常數(shù).

1)求的值;

2)當(dāng)時(shí), 恒成立,求實(shí)數(shù)的取值范圍;

3若關(guān)于的方程上有解,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】當(dāng)時(shí),不等式成立,則實(shí)數(shù)k的取值范圍是______________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】畫糖人是一種以糖為材料在石板上進(jìn)行造型的民間藝術(shù).某糖人師傅在公園內(nèi)畫糖人,每天賣出某種糖人的個(gè)數(shù)與價(jià)格相關(guān),其相關(guān)數(shù)據(jù)統(tǒng)計(jì)如下表:

每個(gè)糖人的價(jià)格(元)

9

10

11

12

13

賣出糖人的個(gè)數(shù)(個(gè))

54

50

46

43

39

(1)根據(jù)表中數(shù)據(jù)求關(guān)于的回歸直線方程;

(2)若該種造型的糖人的成本為2元/個(gè),為使糖人師傅每天獲得最大利潤(rùn),則該種糖人應(yīng)定價(jià)多少元?(精確到1元)

參考公式:回歸直線方程,其中,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著電子商務(wù)的發(fā)展,人們的購(gòu)物習(xí)慣正在改變,基本上所有的需求都可以通過(guò)網(wǎng)絡(luò)購(gòu)物解決.小王是位網(wǎng)購(gòu)達(dá)人,每次購(gòu)買商品成功后都會(huì)對(duì)電商的商品和服務(wù)進(jìn)行評(píng)價(jià).現(xiàn)對(duì)其近年的200次成功交易進(jìn)行評(píng)價(jià)統(tǒng)計(jì),統(tǒng)計(jì)結(jié)果如下表所示.

對(duì)服務(wù)好評(píng)

對(duì)服務(wù)不滿意

合計(jì)

對(duì)商品好評(píng)

80

40

120

對(duì)商品不滿意

70

10

80

合計(jì)

150

50

200

1)是否有的把握認(rèn)為商品好評(píng)與服務(wù)好評(píng)有關(guān)? 請(qǐng)說(shuō)明理由;

2)現(xiàn)從這200次交易中,按照對(duì)商品好評(píng)對(duì)商品不滿意采用分層抽樣取出5次交易,然后從這5次交易中任選兩次進(jìn)行觀察,求這兩次交易中恰有一次對(duì)商品好評(píng)的概率.

附:(其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)

,則的最大值為________;

若函數(shù)有兩個(gè)零點(diǎn),則的取值范圍是________

查看答案和解析>>

同步練習(xí)冊(cè)答案