【題目】如圖,橢圓的左、右焦點(diǎn)分別為,軸,直線軸于點(diǎn),,為橢圓上的動(dòng)點(diǎn),的面積的最大值為1.

(1)求橢圓的方程;

(2)過點(diǎn)作兩條直線與橢圓分別交于且使軸,如圖,問四邊形的兩條對(duì)角線的交點(diǎn)是否為定點(diǎn)?若是,求出定點(diǎn)的坐標(biāo);若不是,請(qǐng)說明理由.

【答案】(1)(2)定點(diǎn)坐標(biāo)為.

【解析】

(Ⅰ)意味著通徑的一半,最大面積為,所以,故橢圓的方程為.

(Ⅱ)根據(jù)對(duì)稱性,猜測(cè)定點(diǎn)必定在軸上,故可設(shè),,則,,再設(shè),根據(jù)三點(diǎn)共線可以得到,聯(lián)立直線和橢圓的標(biāo)準(zhǔn)方程后消去,利用韋達(dá)定理可以得到,從而過定點(diǎn),同理直線也過即兩條直線交于定點(diǎn).

(Ⅰ)設(shè),由題意可得,即.

的中位線,且,

,即,整理得.①

又由題知,當(dāng)在橢圓的上頂點(diǎn)時(shí),的面積最大,

,整理得,即,②

聯(lián)立①②可得,變形得,解得,進(jìn)而.

∴橢圓的方程式為.

(Ⅱ)設(shè),,則由對(duì)稱性可知,.

設(shè)直線軸交于點(diǎn),直線的方程為,

聯(lián)立,消去,得,

,

三點(diǎn)共線,即,

,代入整理得,

,從而,化簡(jiǎn)得,解得,于是直線的方程為, 故直線過定點(diǎn).同理可得過定點(diǎn),

∴直線的交點(diǎn)是定點(diǎn),定點(diǎn)坐標(biāo)為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在三棱柱ABC—A1B1C1中,四邊形AA1B1B為矩形,平面AA1B1B⊥平面ABC,點(diǎn)E,F(xiàn)分別是側(cè)面AA1B1B,BB1C1C對(duì)角線的交點(diǎn).

(1)求證:EF∥平面ABC;

(2)BB1AC

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】,,四本不同的書分給三位同學(xué),每人至少分到一本,每本書都必須有人分到,,不能同時(shí)分給同一個(gè)人,則不同的分配方式共有__________種(用數(shù)字作答).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知某單位甲、乙、丙三個(gè)部門的員工人數(shù)分別為24,16,16.現(xiàn)采用分層抽樣的方法從中抽取7人,進(jìn)行睡眠時(shí)間的調(diào)查.

I)應(yīng)從甲、乙、丙三個(gè)部門的員工中分別抽取多少人?

II)若抽出的7人中有4人睡眠不足,3人睡眠充足,現(xiàn)從這7人中隨機(jī)抽取3人做進(jìn)一步的身體檢查.

i)用X表示抽取的3人中睡眠不足的員工人數(shù),求隨機(jī)變量X的分布列與數(shù)學(xué)期望;

ii)設(shè)A為事件“抽取的3人中,既有睡眠充足的員工,也有睡眠不足的員工”,求事件A發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx=-x2+ef′(x

(Ⅰ)求fx)的單調(diào)區(qū)間;

(Ⅱ)若存在x1,x2x1x2),使得fx1+fx2=1,求證:x1+x22

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在極坐標(biāo)系中,,,,,弧,所在圓的圓心分別是,,曲線是弧,曲線是線段,曲線是線段,曲線是弧.

(1)分別寫出,,,的極坐標(biāo)方程;

(2)曲線,,,構(gòu)成,若點(diǎn),(),在上,則當(dāng)時(shí),求點(diǎn)的極坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了研究某種細(xì)菌的繁殖個(gè)數(shù)y隨天數(shù)x的變化情況,收集數(shù)據(jù)如下:

天數(shù)x

1

2

3

4

5

6

繁殖個(gè)數(shù)y

6

12

25

49

95

190

1)根據(jù)散點(diǎn)圖,判斷哪一個(gè)適合作為y關(guān)于x的回歸方程類型;(給出判斷即可,不用說明理由)

2)根據(jù)(1)中的判斷及表中數(shù)據(jù),求y關(guān)于x的回歸方程參考數(shù)據(jù):,,,

參考公式:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓周上有七個(gè)不同的點(diǎn),以其中任意一點(diǎn)為始點(diǎn),另一點(diǎn)為終點(diǎn)作向量,作出所有的向量(對(duì)于點(diǎn)、,若作出向量,則不再作向量).若其中某四點(diǎn)所確定的凸四邊形的四條邊是首尾相接的四個(gè)向量,則稱其為“零四邊形”.試求以這七個(gè)點(diǎn)中四個(gè)點(diǎn)為頂點(diǎn)的凸四邊形中,零四邊形個(gè)數(shù)的最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】A、B兩種品牌各三種車型20177月的銷量環(huán)比(與20176月比較)增長(zhǎng)率如下表:

A品牌車型

A1

A2

A3

環(huán)比增長(zhǎng)率

-7.29%

10.47%

14.70%

B品牌車型

B1

B2

B3

環(huán)比增長(zhǎng)率

-8.49%

-28.06%

13.25%

根據(jù)此表中的數(shù)據(jù),有如下關(guān)于7月份銷量的四個(gè)結(jié)論:①A1車型銷量比B1車型銷量多;

②A品牌三種車型總銷量環(huán)比增長(zhǎng)率可能大于14.70%;

③B品牌三款車型總銷量環(huán)比增長(zhǎng)率可能為正;

④A品牌三種車型總銷量環(huán)比增長(zhǎng)率可能小于B品牌三種車型總銷量環(huán)比增長(zhǎng)率.

其中正確結(jié)論的個(gè)數(shù)是( )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案