【題目】已知函數(shù)f(x)=-x2+ef′()x.
(Ⅰ)求f(x)的單調(diào)區(qū)間;
(Ⅱ)若存在x1,x2(x1<x2),使得f(x1)+f(x2)=1,求證:x1+x2<2.
【答案】(Ⅰ)在R上單調(diào)遞增;(Ⅱ)見解析
【解析】
(I)f′(x)=e2(x-1)-2x+ef′().令x=,則f′()=-1+ef′(),解得f′(),進而得出函數(shù)f(x)的單調(diào)性.
(II)由(I)可得:函數(shù)f(x))=-x2+x在R上單調(diào)遞增.要證明:x1+x2<2x1<2-x2f(x1)<f(2-x2),又f(x1)+f(x2)=1,因此f(x1)<f(2-x2)1-f(x2)<f(2-x2),即f(x2)+f(2-x2)-1>0,f(1)=-1+1=,則x1<1<x2.令g(x)=f(2-x)+f(x)-1=+-2x2+4x-2,x>1,g(1)=0.利用導(dǎo)數(shù)研究其單調(diào)性即可證明結(jié)論.
(I)f′(x)=e2(x-1)-2x+ef′().
令x=,則f′()=-1+ef′(),解得f′()=.
∴f′(x)=e2(x-1)-2x+1.f″(x)=2e2(x-1)-2=2(ex-1+1)(ex-1-1),
時單調(diào)遞增;時單調(diào)遞減,
∴x=1時,函數(shù)f′(x)取得極小值即最小值,∴f′(x)≥f′(1)=0,
∴函數(shù)f(x)在R上單調(diào)遞增.
(II)由(I)可得:函數(shù)f(x)=-x2+x在R上單調(diào)遞增.
要證明:x1+x2<2x1<2-x2f(x1)<f(2-x2),
又f(x1)+f(x2)=1,因此f(x1)<f(2-x2)1-f(x2)<f(2-x2),
即f(x2)+f(2-x2)-1>0,f(1)==,則x1<1<x2.
令g(x)=f(2-x)+f(x)-1=-(2-x)2+2-x+-x2+x=+-2x2+4x-2,x>1,g(1)=0.g′(x)=-e2(1-x)+e2(x-1)-4x+4,
g″(x)=2e2(1-x)+2e2(x-1)-4≥0,∴g′(x)在(1,+∞)上單調(diào)遞增.
∴g′(x)>g′(1)=0,∴函數(shù)g(x)在(1,+∞)上單調(diào)遞增.
∴g(x)>g(1)=0,因此結(jié)論x1+x2<2成立.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面為正方形,平面,為的中點,交于點,為的重心.
(1)求證:平面;
(2)若,點在線段上,且,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)生產(chǎn)了一種新產(chǎn)品,在推廣期邀請了100位客戶試用該產(chǎn)品,每人一臺.試用一個月之后進行回訪,由客戶先對產(chǎn)品性能作出“滿意”或“不滿意”的評價,再讓客戶決定是否購買該試用產(chǎn)品(不購買則可以免費退貨,購買則僅需付成本價).經(jīng)統(tǒng)計,決定退貨的客戶人數(shù)是總?cè)藬?shù)的一半,“對性能滿意”的客戶比“對性能不滿意”的客戶多10人,“對性能不滿意”的客戶中恰有選擇了退貨.
(1)請完成下面的列聯(lián)表,并判斷是否有的把握認為“客戶購買產(chǎn)品與對產(chǎn)品性能滿意之間有關(guān)”.
對性能滿意 | 對性能不滿意 | 合計 | |
購買產(chǎn)品 | |||
不購買產(chǎn)品 | |||
合計 |
(2)企業(yè)為了改進產(chǎn)品性能,現(xiàn)從“對性能不滿意”的客戶中按是否購買產(chǎn)品進行分層抽樣,隨機抽取6位客戶進行座談.座談后安排了抽獎環(huán)節(jié),共有4張獎券,獎券上分別印有200元、400元、600元和800元字樣,抽到獎券可獲得相應(yīng)獎金.6位客戶有放回的進行抽取,每人隨機抽取一張獎券,求6位客戶中購買產(chǎn)品的客戶人均所得獎金不少于500元的概率.
附:,其中
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從8名運動員中選4人參加4×100米接力賽,在下列條件下,各有多少種不同的排法?(用數(shù)字結(jié)尾)
(1)甲、乙兩人必須跑中間兩棒;
(2)若甲、乙兩人只有一人被選且不能跑中間兩棒;
(3)若甲、乙兩人都被選且必須跑相鄰兩棒.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,橢圓:的左、右焦點分別為,軸,直線交軸于點,,為橢圓上的動點,的面積的最大值為1.
(1)求橢圓的方程;
(2)過點作兩條直線與橢圓分別交于且使軸,如圖,問四邊形的兩條對角線的交點是否為定點?若是,求出定點的坐標;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,橢圓:的左、右焦點分別為,軸,直線交軸于點,,為橢圓上的動點,的面積的最大值為1.
(1)求橢圓的方程;
(2)過點作兩條直線與橢圓分別交于且使軸,如圖,問四邊形的兩條對角線的交點是否為定點?若是,求出定點的坐標;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的圖象關(guān)于原點對稱,其中為常數(shù).
(1)求的值;
(2)當(dāng)時, 恒成立,求實數(shù)的取值范圍;
(3)若關(guān)于的方程在上有解,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】畫糖人是一種以糖為材料在石板上進行造型的民間藝術(shù).某糖人師傅在公園內(nèi)畫糖人,每天賣出某種糖人的個數(shù)與價格相關(guān),其相關(guān)數(shù)據(jù)統(tǒng)計如下表:
每個糖人的價格(元) | 9 | 10 | 11 | 12 | 13 |
賣出糖人的個數(shù)(個) | 54 | 50 | 46 | 43 | 39 |
(1)根據(jù)表中數(shù)據(jù)求關(guān)于的回歸直線方程;
(2)若該種造型的糖人的成本為2元/個,為使糖人師傅每天獲得最大利潤,則該種糖人應(yīng)定價多少元?(精確到1元)
參考公式:回歸直線方程,其中,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點,圓,點是圓上一動點, 的垂直平分線與交于點.
(1)求點的軌跡方程;
(2)設(shè)點的軌跡為曲線,過點且斜率不為0的直線與交于兩點,點關(guān)于軸的對稱點為,證明直線過定點,并求面積的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com