【題目】(8分)在學(xué)習(xí)概率的課堂上,老師提出問題:只有一張電影票,小明和小剛想通過抽取撲克牌的游戲來決定誰去看電影,請你設(shè)計一個對小明和小剛都公平的方案.
甲同學(xué)的方案:將紅桃2、3、4、5四張牌背面向上,小明先抽一張,小剛從剩下的三張牌中抽一張,若兩張牌上的數(shù)字之和是奇數(shù),則小明看電影,否則小剛看電影.
(1)甲同學(xué)的方案公平嗎?請用列表或畫樹狀圖的方法說明;
(2)乙同學(xué)將甲的方案修改為只用紅桃2、3、4三張牌,抽取方式及規(guī)則不變,乙的方案公平嗎?(只回答,不說明理由)
【答案】(1)公平;(2)不公平.
【解析】試題分析:(1)、依據(jù)題意先用列表法或畫樹狀圖法分析所有等可能的出現(xiàn)結(jié)果,然后根據(jù)概率公式求出該事件的概率,比較即可.(2)、解題思路同上.
試題解析:(1)、甲同學(xué)的方案不公平.理由如下:
列表法,
小明 | 2 | 3 | 4 | 5 |
2 | (2,3) | (2,4) | (2,5) | |
3 | (3,2) | (3,4) | (3,5) | |
4 | (4,2) | (4,3) | (4,5) | |
5 | (5,2) | (5,3) | (5,4) |
所有可能出現(xiàn)的結(jié)果共有12種,其中抽出的牌面上的數(shù)字之和為奇數(shù)的有:8種,故小明獲勝的概率為:=,則小剛獲勝的概率為:, 故此游戲兩人獲勝的概率不相同,即他們的游戲規(guī)則不公平;
(2)、不公平.理由如下:
小明 | 3 | 4 | |
2 | (2,3) | (2,4) | |
3 | (3,2) | (3,4) | |
4 | (4,2) | (4,3) |
所有可能出現(xiàn)的結(jié)果共有6種,其中抽出的牌面上的數(shù)字之和為奇數(shù)的有:4種,故小明獲勝的概率為:=,則小剛獲勝的概率為:, 故此游戲兩人獲勝的概率不相同,即他們的游戲規(guī)則不公平.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在矩形ABCD中,BE平分∠ABC交CD邊于點E.點F在BC邊上,且FE⊥AE.如圖.
(1)∠BEC= °;
(2)在圖中已有的三角形中,找到一對全等的三角形,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】每年的6月5日為世界環(huán)保日,為提倡低碳環(huán)保,某公司決定購買10臺節(jié)省能源的新機器,現(xiàn)有甲、乙兩種型號的機器可選,其中每臺的價格、產(chǎn)量如下表:
甲型機器 | 乙型機器 | |
價格(萬元/臺) | a | b |
產(chǎn)量(噸/月) | 240 | 180 |
經(jīng)調(diào)查:購買一臺甲型機器比購買一臺乙型機器多12萬元,購買2臺甲型機器比購買3臺乙型機器多6萬元.
(1) 求a、b的值;
(2) 若該公司購買新機器的資金不超過216萬元,請問該公司有哪幾種購買方案?
(3) 在(2)的條件下,若公司要求每月的產(chǎn)量不低于1890噸,請你為該公司設(shè)計一 種最省錢的購買方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某天小明騎自行車上學(xué),途中因自行車發(fā)生故障,修車耽誤了一段時間后繼續(xù)騎行,按時趕到了學(xué)校.圖中描述了他上學(xué)的途中離家距離(米)與離家時間(分鐘)之間的函數(shù)關(guān)系.下列說法中正確的個數(shù)是( 。
(1)修車時間為15分鐘;
(2)學(xué)校離家的距離為4000米;
(3)到達學(xué)校時共用時間為20分鐘;
(4)自行車發(fā)生故障時離家距離為2000米.
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個不透明的口袋中裝有2個紅球(記為紅1、紅2),1個白球、1個黑球,這些球除顏色外都相同,將球攪勻.
(1)從中任意摸出1個球,恰好摸到紅球的概率是 ;
(2)先從中任意摸出一個球,再從余下的3個球中任意摸出1個球,請用畫樹狀圖或列表法求兩次都摸到紅球的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下圖是某校藝術(shù)節(jié)徽標征集活動4件入圍作品,其中是中心對稱圖形但不是軸對稱圖形的是( )
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,點A,B,C的坐標分別為(a,0),(2,﹣4),(c,0),且a,c滿足方程為二元一次方程.
(1)求A,C的坐標.
(2)若點D為y軸正半軸上的一個動點.
①如圖1,∠AOD+∠ADO+∠DAO=180°,當AD∥BC時,∠ADO與∠ACB的平分線交于點P,求∠P的度數(shù);
②如圖2,連接BD,交x軸于點E.若S△ADE≤S△BCE成立.設(shè)動點D的坐標為(0,d),求d的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知,點、分別是直線、上的兩點.將射線繞點順時針勻速旋轉(zhuǎn),將射線繞點順時針勻速旋轉(zhuǎn),旋轉(zhuǎn)后的射線分別記為、,已知射線、射線旋轉(zhuǎn)的速度之和為6度/秒.
(1)射線先轉(zhuǎn)動得到射線,然后射線、再同時旋轉(zhuǎn)10秒,此時射線與射線第一次出現(xiàn)平行.求射線、的旋轉(zhuǎn)速度;
(2)若射線、分別以(1)中速度同時轉(zhuǎn)動秒,在射線與射線重合之前,設(shè)射線與射線交于點,過點作于點,設(shè),,如圖2所示.
①當時,求、、滿足的數(shù)量關(guān)系;
②當時,求和滿足的數(shù)量關(guān)系.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com