【題目】一個不透明的口袋中裝有2個紅球(記為紅1、紅2),1個白球、1個黑球,這些球除顏色外都相同,將球攪勻.
(1)從中任意摸出1個球,恰好摸到紅球的概率是 ;
(2)先從中任意摸出一個球,再從余下的3個球中任意摸出1個球,請用畫樹狀圖或列表法求兩次都摸到紅球的概率.
【答案】(1).(2) .
【解析】試題分析:(1)根據(jù)4個小球中紅球的個數(shù),即可確定出從中任意摸出1個球,恰好摸到紅球的概率;
(2)列表得出所有等可能的情況數(shù),找出兩次都摸到紅球的情況數(shù),即可求出所求的概率.
試題解析:(1)4個小球中有2個紅球,
則任意摸出1個球,恰好摸到紅球的概率是;
(2)列表如下:
紅 | 紅 | 白 | 黑 | |
紅 | --- | (紅,紅) | (白,紅) | (黑,紅) |
紅 | (紅,紅) | --- | (白,紅) | (黑,紅) |
白 | (紅,白) | (紅,白) | --- | (黑,白) |
黑 | (紅,黑) | (紅,黑) | (白,黑) | --- |
所有等可能的情況有12種,其中兩次都摸到紅球有2種可能,
則P(兩次摸到紅球)=.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在下列條件中,△ABC不是直角三角形的是 ( )
A. b2=a2-c2 B. ∠A:∠B:∠C=3:4:5
C. ∠C=∠A-∠B D. a2:b2:c2=1:3:2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某工藝品廠生產(chǎn)一種汽車裝飾品,每件生產(chǎn)成本為20元,銷售價格在30元至80元之間(含30元和80元),銷售過程中的管理、倉儲、運輸?shù)雀鞣N費用(不含生產(chǎn)成本)總計50萬元,其銷售量y(萬個)與銷售價格(元/個)的函數(shù)關(guān)系如圖所示.
(1)當(dāng)30≤x≤60時,求y與x的函數(shù)關(guān)系式;
(2)求出該廠生產(chǎn)銷售這種產(chǎn)品的純利潤w(萬元)與銷售價格x(元/個)的函數(shù)關(guān)系式;
(3)銷售價格應(yīng)定為多少元時,獲得利潤最大,最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,正方形OABC的頂點O與坐標(biāo)原點重合,點C的坐標(biāo)為(0,3),點A在x軸的負(fù)半軸上,點D、M分別在邊AB、OA上,且AD=2DB,AM=2MO,一次函數(shù)y=kx+b的圖象過點D和M,反比例函數(shù)y=的圖象經(jīng)過點D,與BC的交點為N.
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)若點P在直線DM上,且使△OPM的面積與四邊形OMNC的面積相等,求點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程x2-2x-m2=0.
(1)求證:該方程有兩個不相等的實數(shù)根;
(2)若該方程有兩個實數(shù)根為x1,x2,且x1=2x2+5,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,將△ABC沿DE折疊,使頂點C落在△ABC三邊的垂直平分線的交點O處,若BE=BO,則∠BOE=____________度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“成自”高鐵自貢仙市段在建設(shè)時,甲、乙兩個工程隊計劃參與該項工程建設(shè),甲隊單獨施工30天完成該項工程的,這時乙隊加入,兩隊還需同時施工30天,才能完成該項工程.
(1)若乙隊單獨施工,需要多少天才能完成該項工程?
(2)若甲隊參與該項工程施工的時間不超過40天,則乙隊至少施工多少天才能完成該項工程?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線l1∥l2,且l3和l1,l2分別交于A,B兩點,點P在AB上.
(1)試找出∠1,∠2,∠3之間的關(guān)系并說出理由;
(2)如果點P在A,B兩點之間運動,問∠1,∠2,∠3之間的關(guān)系是否發(fā)生變化?
(3)如果點P在A,B兩點外側(cè)運動,試探究∠1,∠2,∠3之間的關(guān)系(點P和A,B不重合).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在菱形ABCD中,F(xiàn)是BC上任意一點,連接AF交對角線BD于點E,連接EC.
(1)求證:AE=EC;
(2)當(dāng)∠ABC=60°,∠CEF=60°時,點F在線段BC上的什么位置?說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com