【題目】如圖是作一個角的角平分線的方法:以的頂點為圓心,以任意長為半徑畫弧,分別交于兩點,再分別以為圓心,大于長為半徑作畫弧,兩條弧交于點,作射線,過點作交于點.
(1)若,求的度數(shù);
(2)若,垂足為,求證: .
【答案】(1)35°;(2)見解析.
【解析】
(1)首先根據(jù)OB∥FD,可得∠OFD+∠AOB=18O°,進(jìn)而得到∠AOB的度數(shù),再根據(jù)作圖可知OP平分∠AOB,進(jìn)而算出∠DOB的度數(shù)即可;
(2)首先證明∴∠AOD=∠ODF,再由FM⊥OD可得∠OMF=∠DMF,再加上公共邊FM=FM,可利用AAS證明△FMO≌△FMD.
(1)解:∵OB∥FD,
∴∠OFD+∠AOB=18O°,
又∵∠OFD=110°,
∴∠AOB=180°∠OFD=180°110°=70°,
由作法知,OP是∠AOB的平分線,
∴∠DOB=∠ABO=;
(2)證明:∵OP平分∠AOB,
∴∠AOD=∠DOB,
∵OB∥FD,
∴∠DOB=∠ODF,
∴∠AOD=∠ODF,
又∵FM⊥OD,
∴∠OMF=∠DMF,
在△MFO和△MFD中
∴△MFO≌△MFD(AAS).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的弦,D為OA半徑的中點,過D作CD⊥OA交弦AB于點E,交⊙O于點F,且CE=CB.
(1)求證:BC是⊙O的切線;
(2)連接AF、BF,求∠ABF的度數(shù);
(3)如果BE=10,sinA=,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一名同學(xué)調(diào)查了全班名同學(xué)分別喜歡相聲、小品、歌曲、舞蹈節(jié)目的類別情況,并制成如下統(tǒng)計表:
最喜歡的節(jié)目類別 | 劃記 | 人數(shù) | 百分?jǐn)?shù)(%) |
相聲 | 正 | ||
小品 | 正正正一 | ||
歌曲 | 正正 | ||
舞蹈 | 正一 |
其中對這些節(jié)目類別的統(tǒng)計中,僅有一類節(jié)目的統(tǒng)計是完全正確的,該項統(tǒng)計類別是( )
A.相聲B.小品C.歌曲D.舞蹈
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】適合下列條件的△ABC中,直角三角形的個數(shù)為( 。
①a=3,b=4,c=5; ②a=6,∠A=45°;③a=2,b=2,c=2; ④∠A=38°,∠B=52°.
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=x2﹣x﹣9與x軸交于A、B兩點,與y軸交于點C,連接BC、AC.
(1)求AB和OC的長;
(2)點E從點A出發(fā),沿x軸向點B運(yùn)動(點E與點A、B不重合),過點E作直線l平行BC,交AC于點D.設(shè)AE的長為m,△ADE的面積為s,求s關(guān)于m的函數(shù)關(guān)系式,并寫出自變量m的取值范圍;
(3)在(2)的條件下,連接CE,求△CDE面積的最大值;此時,求出以點E為圓心,與BC相切的圓的面積(結(jié)果保留π).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校準(zhǔn)備從體育用品商店一次性購買若干個籃球和足球(每個籃球的價格相同,每個足球的價格相同),購買1個足球和2個籃球共需270元;購買2個足球和3個籃球共需440元.
(1)問足球和籃球的單價各是多少元?
(2)若購買足球和籃球共24個,且購買籃球的個數(shù)大于足球個數(shù)的2倍,購買球的總費(fèi)用不超過2220元,問該學(xué)校有哪幾種不同的購買方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=3x2+1和y=3(x﹣1)2 , 以下說法: ①它們的圖象都是開口向上;
②它們的對稱軸都是y軸,頂點坐標(biāo)都是原點(0,0);
③當(dāng)x>0時,它們的函數(shù)值y都是隨著x的增大而增大;
④它們的開口的大小是一樣的.
其中正確的說法有( )
A. 1個 B. 2 C. 3 D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知點,,請確定點C的坐標(biāo),使得以A,B,C,O為頂點的四邊形是平行四邊形,則滿足條件的所有點C的坐標(biāo)是___________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com