【題目】已知橢圓右焦點,離心率為,過作兩條互相垂直的弦,設中點分別為

(1) 求橢圓的標準方程;

(2)求以為頂點的四邊形的面積的取值范圍;

【答案】(1) (2)

【解析】

(Ⅰ)利用橢圓的離心率,以及求出a、b,即可求橢圓的方程;
(Ⅱ)①當兩條弦中一條斜率為0時,另一條弦的斜率不存在,直接求出面積.
②當兩弦斜率均存在且不為0時,設A(x1,y1),B(x2,y2),且設直線AB的方程為y=k(x-1),與橢圓方程聯(lián)立,利用韋達定理以及弦長公式,求出AB,CD即可求解面積的表達式,通過基本不等式求出面積的最值.

解:(1) 由題意:

,

則橢圓的方程為

(2) ①當兩直線一條斜率不存在一條斜率為0時,

②當兩直線斜率存在且都不為0時,

設直線方程為

將其帶入橢圓方程整理得:

同理,

,當時,

綜上所述四邊形面積范圍是

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】以直角坐標系的原點為極點,軸的正半軸為極軸建立極坐標系,已知點的直角坐標為,若直線的極坐標方程為,曲線的參數(shù)方程是為參數(shù)).

(1)求直線l和曲線的普通方程;

(2)設直線l和曲線交于兩點,求

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】沃爾瑪超市委托某機構調查該超市的顧客使用移動支付的情況.調查人員從年齡在內的顧客中,隨機抽取了200人,調查結果如圖所示:

1)為推廣移動支付,超市準備對使用移動支付的每位顧客贈送1個環(huán)保購物袋.若某日該超市預計有5000人購物,試根據(jù)上述數(shù)據(jù)估計,該超市當天應準備多少個環(huán)保購物袋?

2)填寫下面列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有的把握認為使用移動支付與年齡有關.

年齡的人數(shù)

年齡的人數(shù)

總計

使用移動支付

不使用移動支付

總計

,其中.

/tr>

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知直線為參數(shù)).以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.

(1)求曲線的直角坐標方程;

(2)設點的直角坐標為,直線與曲線的交點為,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)上沒有最小值,則的取值范圍是________________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某高校統(tǒng)計課程的教師隨機調查了選該課的一些學生的情況,具體數(shù)據(jù)如下表,為了判斷主修統(tǒng)計專業(yè)是否與性別有關,計算得到,因為,所以判定主修統(tǒng)計專業(yè)與性別是有關系的,那么這種判斷出錯的可能性為________.

專業(yè)

性別

非統(tǒng)計專業(yè)

統(tǒng)計專業(yè)

13

10

7

20

本題可以參考獨立性檢驗臨界值表:

0.5

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點為拋物線上的兩點,為坐標原點,且,則的面積的最小值為( )

A. 16 B. 8 C. 4 D. 2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知正項數(shù)列的首項,前n項和滿足

(1)求數(shù)列的通項公式;

(2)若數(shù)列是公比為4的等比數(shù)列,且也是等比數(shù)列,若數(shù)列單調遞增,求實數(shù)的取值范圍;

(3)若數(shù)列、都是等比數(shù)列,且滿足,試證明: 數(shù)列中只存在三項.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】隨著網絡和智能手機的普及與快速發(fā)展,許多可以解答各學科問題的搜題軟件走紅.有教育工作者認為:網搜答案可以起到拓展思路的作用,但是對多數(shù)學生來講,容易產生依賴心理,對學習能力造成損害.為了了解網絡搜題在學生中的使用情況,某校對學生在一周時間內進行網絡搜題的頻數(shù)進行了問卷調查,并從參與調查的學生中抽取了男、女學生各人進行抽樣分析,得到如下樣本頻數(shù)分布表:

一周時間內進行網絡搜題的頻數(shù)區(qū)間

男生頻數(shù)

女生頻數(shù)

18

4

10

8

12

13

6

15

4

10

將學生在一周時間內進行網絡搜題頻數(shù)超過次的行為視為“經常使用網絡搜題”,不超過20次的視為“偶爾或不用網絡搜題”.

1)根據(jù)已有數(shù)據(jù),完成下列列聯(lián)表(單位:人)中數(shù)據(jù)的填寫,并判斷是否在犯錯誤的概率不超過%的前提下有把握認為使用網絡搜題與性別有關?

經常使用網絡搜題

偶爾或不用絡搜題

合計

男生

女生

合計

2)將上述調查所得到的頻率視為概率,從該校所有參與調查的學生中,采用隨機抽樣的方法每次抽取一個人,抽取人,記經常使用網絡搜題的人數(shù)為,若每次抽取的結果是相互獨立的,求隨機變量的分布列和數(shù)學期望.

參考公式:,其中.

參考數(shù)據(jù):

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

同步練習冊答案