【題目】以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,已知點(diǎn)的直角坐標(biāo)為,若直線的極坐標(biāo)方程為,曲線的參數(shù)方程是為參數(shù)).

(1)求直線l和曲線的普通方程;

(2)設(shè)直線l和曲線交于兩點(diǎn),求

【答案】(1);(2)1

【解析】

(1)直線的極坐標(biāo)方程為,利用互化公式,能求出直線的普通方程,曲線的參數(shù)方程利用代入法消去參數(shù)能求出曲線的普通方程;(2)點(diǎn)的直角坐標(biāo)為點(diǎn)在直線上,求出直線的參數(shù)方程,得到,由此利用韋達(dá)定理,結(jié)合直線參數(shù)方程的幾何意義,能求出的值.

(1)因?yàn)?/span>,所以

,得,因?yàn)?/span>消去t

所以直線l和曲線的普通方程分別為

(2)點(diǎn)的直角坐標(biāo)為,點(diǎn)在直線l上,設(shè)直線的參數(shù)方程:(t為參數(shù)),

對(duì)應(yīng)的參數(shù)為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線平面,直線平面,有以下四個(gè)命題:( )

;②;③;④;

其中正確命題的序號(hào)為

A. ②④ B. ③④ C. ①③ D. ①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】電視傳媒公司為了解某地區(qū)電視觀眾對(duì)某類體育節(jié)目的收視情況,隨機(jī)抽取了100名觀眾進(jìn)行調(diào)查.下面是根據(jù)調(diào)查結(jié)果繪制的觀眾日均收看該體育節(jié)目時(shí)間的頻率分布直方圖:

將日均收看該體育節(jié)目時(shí)間不低于40分鐘的觀眾稱為“體育迷”.

(1)根據(jù)已知條件完成上面的列聯(lián)表,若按的可靠性要求,并據(jù)此資料,你是否認(rèn)為“體育迷”與性別有關(guān)?

(2)將上述調(diào)查所得到的頻率視為概率.現(xiàn)在從該地區(qū)大量電視觀眾中,采用隨機(jī)抽樣方法每次抽取1名觀眾,抽取3次,記被抽取的3名觀眾中的“體育迷”人數(shù)為.若每次抽取的結(jié)果是相互獨(dú)立的,求分布列,期望和方差.

附:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】是指空氣中直徑小于或等于微米的顆粒物(也稱可入肺顆粒物).為了探究車流量與的濃度是否相關(guān),現(xiàn)采集到某城市周一至周五某一時(shí)間段車流量與的數(shù)據(jù)如下表:

時(shí)間

周一

周二

周三

周四

周五

車流量(萬(wàn)輛)

的濃度微克/立方米

Ⅰ)根據(jù)上表數(shù)據(jù),請(qǐng)?jiān)谒o的坐標(biāo)系中畫出散點(diǎn)圖;

Ⅱ)根據(jù)上表數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;

Ⅲ)若周六同一時(shí)間段的車流量是萬(wàn)輛,試根據(jù)(Ⅱ)求出的線性回歸方程,預(yù)測(cè)此時(shí)的濃度為多少(保留整數(shù))?

參考公式:由最小二乘法所得回歸直線的方程是:,

其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若向量 = , =(sinωx,0),其中ω>0,記函數(shù)f(x)=( + .若函數(shù)f(x)的圖象與直線y=m(m為常數(shù))相切,并且切點(diǎn)的橫坐標(biāo)依次成公差是π的等差數(shù)列.
(Ⅰ)求f(x)的表達(dá)式及m的值;
(Ⅱ)將f(x)的圖象向左平移 個(gè)單位,再將得到的圖象上各點(diǎn)的縱坐標(biāo)變?yōu)樵瓉?lái)的2倍(橫坐標(biāo)不變)后得到y(tǒng)=g(x)的圖象,求y=g(x)在 上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】等差數(shù)列{an}的公差為d,關(guān)于x的不等式 x2+(a1 )x+c≥0的解集是[0,22],則使得數(shù)列{an}的前n項(xiàng)和大于零的最大的正整數(shù)n的值是(
A.11
B.12
C.13
D.不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在公差不為0的等差數(shù)列{an}中,a1+a5=ap+aq , 記 + 的最小值為m,若數(shù)列{bn}滿足bn>0,b1= m,bn+1是1與 的等比中項(xiàng),若bn 對(duì)任意n∈N*恒成立,則s的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明跟父母、爺爺奶奶一同參加《中國(guó)詩(shī)詞大會(huì)》的現(xiàn)場(chǎng)錄制,5人坐成一排.若小明的父母至少有一人與他相鄰,則不同坐法的總數(shù)為

A. 60 B. 72 C. 84 D. 96

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為, 為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為,若直線與曲線相切;

(1)求曲線的極坐標(biāo)方程;

(2)在曲線上取兩點(diǎn), 與原點(diǎn)構(gòu)成,且滿足,求面積的最大值.

【答案】(1);(2)

【解析】試題分析:(1)利用極坐標(biāo)與直角坐標(biāo)的互化公式可得直線的直角坐標(biāo)方程為,

,消去參數(shù)可知曲線是圓心為,半徑為的圓,由直線與曲線相切,可得: ;則曲線C的方程為, 再次利用極坐標(biāo)與直角坐標(biāo)的互化公式可得

可得曲線C的極坐標(biāo)方程.

(2)由(1)不妨設(shè)M(),,(),

,

,

由此可求面積的最大值.

試題解析:(1)由題意可知直線的直角坐標(biāo)方程為,

曲線是圓心為,半徑為的圓,直線與曲線相切,可得: ;可知曲線C的方程為,

所以曲線C的極坐標(biāo)方程為,

.

(2)由(1)不妨設(shè)M(),,(),

,

當(dāng) 時(shí), ,

所以△MON面積的最大值為.

型】解答
結(jié)束】
23

【題目】已知函數(shù)的定義域?yàn)?/span>

(1)求實(shí)數(shù)的取值范圍;

(2)設(shè)實(shí)數(shù)的最大值,若實(shí)數(shù), 滿足,求的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案