【題目】已知點(diǎn)為拋物線上的兩點(diǎn),為坐標(biāo)原點(diǎn),且,則的面積的最小值為( )

A. 16 B. 8 C. 4 D. 2

【答案】A

【解析】

方法一

第一步,A,B點(diǎn)設(shè)出來(lái)

第二步,根據(jù)向量垂直的等式關(guān)系推導(dǎo)出參數(shù)間的關(guān)系;

第三步,根據(jù)題意列出面積方程;

第四步利用均值不等式進(jìn)行求最小值.

方法二:

由對(duì)稱性,當(dāng)的面積取得最小值時(shí),兩點(diǎn)關(guān)于軸對(duì)稱,根據(jù)對(duì)稱關(guān)系,直線的傾斜角為,直線的方程為,將其代入拋物線方程,

解析:設(shè),則,,則解得, 根據(jù)三角形的面積公式,

,當(dāng)且僅當(dāng)時(shí),取最小值.

的面積的最小值為16.

解法2:由對(duì)稱性,當(dāng)的面積取得最小值時(shí),兩點(diǎn)關(guān)于軸對(duì)稱,又因?yàn)?/span>,所以直線的傾斜角為,直線的方程為,將其代入拋物線方程,解得,

所以,此時(shí)

答案選A

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1)若函數(shù)yf(x)為偶函數(shù),求k 的值;

2)求函數(shù)yf(x)在區(qū)間[0,4]上的最大值;

3)若方程f(x)=0 有且僅有一個(gè)根,求實(shí)數(shù)k 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2017年11月、12月全國(guó)大范圍流感爆發(fā),為研究晝夜溫差大小與患感冒人數(shù)多少之間的關(guān)系,一興趣小組抄錄了某醫(yī)院11月到12月間的連續(xù)6個(gè)星期的晝夜溫差情況與因患感冒而就診的人數(shù),得到如下資料:

日期

第一周

第二周

第三周

第四周

第五周

第六周

晝夜溫差x(°C)

10

11

13

12

8

6

就診人數(shù)y(個(gè))

22

25

29

26

16

12

該興趣小組確定的研究方案是先從這六組數(shù)據(jù)中選取2組用剩下的4組數(shù)據(jù)求線性回歸方程,再用被選取的2組數(shù)據(jù)進(jìn)行檢驗(yàn)。

(Ⅰ)求選取的2組數(shù)據(jù)恰好是相鄰兩個(gè)星期的概率;

(Ⅱ)若選取的是第一周與第六周的兩組數(shù)據(jù)請(qǐng)根據(jù)第二周到第五周的4組數(shù)據(jù),求出關(guān)于的線性回歸方程;

(Ⅲ)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過(guò)2人,則認(rèn)為得到的線性回歸方程是理想的,試問(wèn)該小組所得線性回歸方程是否理想?

(參考公式: )

參考數(shù)據(jù): 1092, 498

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某興趣小組進(jìn)行“野島生存”實(shí)踐活動(dòng),他們?cè)O(shè)置了個(gè)取水敞口箱.其中個(gè)采用種取水法,個(gè)采用種取水法.如圖甲為種方法一個(gè)夜晚操作一次個(gè)水箱積取淡水量頻率分布直方圖,圖乙為種方法一個(gè)夜晚操作一次個(gè)水箱積取淡水量頻率分布直方圖.

(1)設(shè)兩種取水方法互不影響,設(shè)表示事件“法取水箱水量不低于,法取水箱水量不低于”,以樣本估計(jì)總體,以頻率分布直方圖中的頻率為概率,估計(jì)的概率;

(2)填寫(xiě)下面列聯(lián)表,并判斷是否有的把握認(rèn)為箱積水量與取水方法有關(guān).

箱積水量

箱積水量

箱數(shù)總計(jì)

箱數(shù)總計(jì)

附:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知

1)求函數(shù)的解析式及其定義域;

2)若對(duì)恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為凈化新安江水域的水質(zhì),市環(huán)保局于2017年底在新安江水域投入一些蒲草,這些蒲草在水中的蔓延速度越來(lái)越快,2018年二月底測(cè)得蒲草覆蓋面積為,2018年三月底測(cè)得覆蓋面積為,蒲草覆蓋面積(單位:)與月份(單位:月)的關(guān)系有兩個(gè)函數(shù)模型可供選擇.

(Ⅰ)分別求出兩個(gè)函數(shù)模型的解析式;

(Ⅱ)若市環(huán)保局在2017年年底投放了的蒲草,試判斷哪個(gè)函數(shù)模型更合適?并說(shuō)明理由;

(Ⅲ)利用(Ⅱ)的結(jié)論,求蒲草覆蓋面積達(dá)到的最小月份.

(參考數(shù)據(jù):,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在邊長(zhǎng)為2的正方形ABCD中,E為線段AB的中點(diǎn),將△ADE沿直線DE翻折成△ADE,使得平面ADE⊥平面BCDE,F為線段AC的中點(diǎn).

(Ⅰ)求證:BF∥平面ADE

(Ⅱ)求直線AB與平面ADE所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)等差數(shù)列的前項(xiàng)和為,數(shù)列的前項(xiàng)和為,下列說(shuō)法錯(cuò)誤的是( )

A. 有最大值,則也有最大值

B. 有最大值,則也有最大值

C. 若數(shù)列不單調(diào),則數(shù)列也不單調(diào)

D. 若數(shù)列不單調(diào),則數(shù)列也不單調(diào)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某租賃公司擁有汽車100.當(dāng)每輛車的月租金為3000元時(shí),可全部租出.當(dāng)每輛車的月租金每增加元時(shí),未租出的車將會(huì)增加一輛.租出的車每輛每月需要維護(hù)費(fèi)元,未租出的車每輛每月需要維護(hù)費(fèi).

1)當(dāng)每輛車的月租金定為元時(shí),能租出多少輛車?

2)當(dāng)每輛車的月租金定為多少元時(shí),租賃公司的月收益最大?最大月收益是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案