【題目】用長為,寬為的長方形鐵皮做一個無蓋的容器.先在四角分別截去一個小正方形,然后把四邊翻轉(zhuǎn),再焊接而成(如圖).問該容器的高為多少時,容器的容積最大?最大容積是多少?

【答案】當(dāng)容器高為10cm時,最大容積是19600cm2

【解析】試題分析:首先分析題目求長為90cm,寬為48cm的長方形鐵皮做一個無蓋的容器當(dāng)容器的高為多少時,容器的容積最大.故可設(shè)容器的高為x,體積為V,求出v關(guān)于x的方程,然后求出導(dǎo)函數(shù),分析單調(diào)性即可求得最值.

解:根據(jù)題意可設(shè)容器的高為x,容器的體積為V,

則有V=90﹣2x)(48﹣2xx=4x3﹣276x2+4320x,(0x24

求導(dǎo)可得到:V′=12x2﹣552x+4320

V′=12x2﹣552x+4320=0x1=10,x2=36

所以當(dāng)x10時,V′0,

當(dāng)10x36時,V′0,

當(dāng)x36時,V′0,

所以,當(dāng)x=10,V有極大值V10=19600,又V0=0,V24=0,

所以當(dāng)x=10V有最大值V10=19600

故答案為當(dāng)高為10,最大容積為19600

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某高校共有學(xué)生15000人,其中男生10500人,女生4500人,為調(diào)查該校學(xué)生每周平均體育運(yùn)動時間的情況,采用分層抽樣的方法,收集300位學(xué)生每周平均體育運(yùn)動時間的樣本數(shù)據(jù)(單位:小時).

1)應(yīng)收集多少位女生的樣本數(shù)據(jù)?

2)根據(jù)這300樣本數(shù)據(jù),得到學(xué)生每周平均體育運(yùn)動時間的頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)的分組區(qū)間為: .估計該校學(xué)生每周平均體育運(yùn)動時間超過4小時的概率;

3)在樣本數(shù)據(jù)中,有60位女生的每周平均體育運(yùn)動時間超過4小時,請完成每周平均體育運(yùn)動時間與性別的列聯(lián)表,并判斷是否有95%的把握認(rèn)為該校學(xué)生的每周平均體育運(yùn)動時間與性別有關(guān)


0.10

0.05

0.010

0.005


2.706

3.841

6.635

7.879

附:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x3-3ax-1,a≠0.

(1)求f(x)的單調(diào)區(qū)間;

(2)若f(x)在x=-1處取得極值,直線y=m與y=f(x)的圖象有三個不同的交點(diǎn),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y2=2px(p>0)的焦點(diǎn)為F,A是拋物線上橫坐標(biāo)為4,且位于x軸上方的點(diǎn),A到拋物線準(zhǔn)線的距離等于5,過A作AB垂直于y軸,垂足為B,OB的中點(diǎn)為M.

(1)求拋物線的方程;

(2)以M為圓心,MB為半徑作圓M,當(dāng)K(m,0)是x軸上一動點(diǎn)時,討論直線AK與圓M的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(1)y=的單調(diào)遞減區(qū)間是_____________.

(2)y=的遞增區(qū)間是____________________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下面幾種推理是合情推理的是

①由圓的性質(zhì)類比出球的有關(guān)性質(zhì);②由直角三角形、等腰三角形、等邊三角形的內(nèi)角和是180°,歸納出所有三角形的內(nèi)角和都是180°;③教室內(nèi)有一把椅子壞了,則該教室內(nèi)的所有椅子都壞了;④三角形內(nèi)角和是180°,四邊形內(nèi)角和是360°,五邊形內(nèi)角和是540°,由此得出凸多邊形的內(nèi)角和是(n-2)·180°___________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,棱形與正三角形的邊長均為2,它們所在平面互相垂直, ,且

1)求證: ;

2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

(1)求函數(shù)上的最小值;

(2)對一切,恒成立,求實(shí)數(shù)的取值范圍;

(3)探討函數(shù)是否存在零點(diǎn)?若存在,求出函數(shù)的零點(diǎn);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】東亞運(yùn)動會將于2013106日在天津舉行.為了搞好接待工作,組委會打算學(xué)習(xí)北京奧運(yùn)會招募大量志愿者的經(jīng)驗(yàn),在某學(xué)院招募了16名男志愿者和14名女志愿者,調(diào)查發(fā)現(xiàn),男女志愿者中分別有10人和6人喜愛運(yùn)動,其余人不喜歡運(yùn)動.

(1)根據(jù)以上數(shù)據(jù)完成以下2×2列聯(lián)表:

喜愛運(yùn)動

不喜愛運(yùn)動

總計

10

16

6

14

總計

30

(2)根據(jù)列聯(lián)表的獨(dú)立性檢驗(yàn),能否在犯錯誤的概率不超過0.10的前提下認(rèn)為性別與喜愛運(yùn)動有關(guān)?

(3)如果從喜歡運(yùn)動的女志愿者中(其中恰有4人會外語),抽取2名負(fù)責(zé)翻譯工作,那么抽出的志愿者中至少有1人能勝任翻譯工作的概率是多少?

參考公式:K2,其中

nabcd.

參考數(shù)據(jù):

P(K2k)

0.40

0.25

0.10

0.010

k

0.708

1.323

2.706

6.635

查看答案和解析>>

同步練習(xí)冊答案