【題目】已知拋物線(xiàn)y2=2px(p>0)的焦點(diǎn)為F,A是拋物線(xiàn)上橫坐標(biāo)為4,且位于x軸上方的點(diǎn),A到拋物線(xiàn)準(zhǔn)線(xiàn)的距離等于5,過(guò)A作AB垂直于y軸,垂足為B,OB的中點(diǎn)為M.

(1)求拋物線(xiàn)的方程;

(2)以M為圓心,MB為半徑作圓M,當(dāng)K(m,0)是x軸上一動(dòng)點(diǎn)時(shí),討論直線(xiàn)AK與圓M的位置關(guān)系.

【答案】見(jiàn)解析

【解析】 (1)拋物線(xiàn)y2=2px的準(zhǔn)線(xiàn)為x=-

由題意得4+=5,所以p=2,

所以?huà)佄锞(xiàn)的方程為y2=4x.

(2)由題意知,圓M的圓心為點(diǎn)(0,2),半徑為2.

當(dāng)m=4時(shí),直線(xiàn)AK的方程為x=4,

此時(shí),直線(xiàn)AK與圓M相離;

當(dāng)m≠4時(shí),由(1)知A(4,4),

則直線(xiàn)AK的方程為y= (x-m),

即4x-(4-m)y-4m=0,

圓心M(0,2)到直線(xiàn)AK的距離

d=,

令d>2,解得m>1.

所以,當(dāng)m>1時(shí),直線(xiàn)AK與圓M相離;

當(dāng)m=1時(shí),直線(xiàn)AK與圓M相切;

當(dāng)m<1時(shí),直線(xiàn)AK與圓M相交.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】學(xué)校藝術(shù)節(jié)對(duì)同一類(lèi)的,,四項(xiàng)參賽作品,只評(píng)一項(xiàng)一等獎(jiǎng),在評(píng)獎(jiǎng)揭曉前,甲、乙、丙、丁四位同學(xué)對(duì)這四項(xiàng)參賽作品預(yù)測(cè)如下:

甲說(shuō):“是作品獲得一等獎(jiǎng)”;

乙說(shuō):“作品獲得一等獎(jiǎng)”;

丙說(shuō):“,兩項(xiàng)作品未獲得一等獎(jiǎng)”;

丁說(shuō):“是作品獲得一等獎(jiǎng)”.

若這四位同學(xué)中只有兩位說(shuō)的話(huà)是對(duì)的,則獲得一等獎(jiǎng)的作品是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,橢圓的上、下頂點(diǎn)分別為, ,右焦點(diǎn)為,點(diǎn)在橢圓上,且.

(1)若點(diǎn)坐標(biāo)為,求橢圓的方程;

(2)延長(zhǎng)交橢圓與點(diǎn),若直線(xiàn)的斜率是直線(xiàn)的斜率的3倍,求橢圓的離心率;

(3)是否存在橢圓,使直線(xiàn)平分線(xiàn)段?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù), )為奇函數(shù),且相鄰兩對(duì)稱(chēng)軸間的距離為.

(1)當(dāng)時(shí),求的單調(diào)遞減區(qū)間;

(2)將函數(shù)的圖象沿軸方向向右平移個(gè)單位長(zhǎng)度,再把橫坐標(biāo)縮短到原來(lái)的(縱坐標(biāo)不變),得到函數(shù)的圖象.當(dāng)時(shí),求函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=x3-3ax-1,a≠0.

(1)求f(x)的單調(diào)區(qū)間;

(2)若f(x)在x=-1處取得極值,直線(xiàn)y=m與y=f(x)的圖象有三個(gè)不同的交點(diǎn),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】比較下列各組中兩個(gè)值的大小 :

(1)ln0.3,ln2(2)loga3.1,loga5.2(a>0,且a1)

(3)log30.2,log40.2; (4)log3π,logπ3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)關(guān)于x的函數(shù)y=2cos2x-2acosx-(2a+1)的最小值為f(a),試確定滿(mǎn)足f(a)=的a的值,并求此時(shí)函數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知集合

⑴求實(shí)數(shù)的值;

⑵若,求集合。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,曲線(xiàn)的參數(shù)方程為為參數(shù)),以原點(diǎn)為極點(diǎn), 軸正半軸為極軸,建立極坐標(biāo)系,直線(xiàn)的極坐標(biāo)方程為

(1)求曲線(xiàn)的普通方程與直線(xiàn)的直角坐標(biāo)方程;

(2)設(shè)為曲線(xiàn)上的動(dòng)點(diǎn),求點(diǎn)的直線(xiàn)的距離的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案