【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以原點為極點, 軸正半軸為極軸,建立極坐標(biāo)系,直線的極坐標(biāo)方程為.
(1)求曲線的普通方程與直線的直角坐標(biāo)方程;
(2)設(shè)為曲線上的動點,求點的直線的距離的最小值.
【答案】(1)曲線的普通方程為: ;直線的直角坐標(biāo)系方程為:
(2)點到直線的最小值為.
【解析】試題分析:(1)利用三角函數(shù)恒等式可消去參數(shù),得曲線的普通方程,利用平面直角坐標(biāo)系與極坐標(biāo)系間的轉(zhuǎn)化關(guān)系,可得直線的直角坐標(biāo)方程;(2)利用曲線的參數(shù)方程和點到直線的距離公式求得,再利用三角函數(shù)性質(zhì)可得的最小值.
試題解析:(1)由曲線得
即:曲線的普通方程為: ,
由曲線,得: ,
即:曲線的直角坐標(biāo)方程為: ;
(2)由(1)知橢圓與直線無公共點,
橢圓上的點到直線的距離為
,
所以當(dāng)時, 的最小值為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y2=2px(p>0)的焦點為F,A是拋物線上橫坐標(biāo)為4,且位于x軸上方的點,A到拋物線準(zhǔn)線的距離等于5,過A作AB垂直于y軸,垂足為B,OB的中點為M.
(1)求拋物線的方程;
(2)以M為圓心,MB為半徑作圓M,當(dāng)K(m,0)是x軸上一動點時,討論直線AK與圓M的位置關(guān)系.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖甲,在直角梯形中,,,,,是的中點,是與的交點,將沿折起到的位置,如圖乙.
(Ⅰ)證明:平面;
(Ⅱ)若平面平面,求點到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)()在上的最小值為,當(dāng)把的圖象上所有的點向右平移個單位后,得到函數(shù)的圖象.
(1)求函數(shù)的解析式;
(2)在△中,角,,對應(yīng)的邊分別是,,,若函數(shù)在軸右側(cè)的第一個零點恰為,,求△的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐P-ABCD中,底面ABCD為矩形,PA⊥平面ABCD,E為PD的中點.
(1) 證明:PB∥平面AEC
(2) 設(shè)二面角D-AE-C為60°,AP=1,AD=,求三棱錐E-ACD的體積
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)的定義域為(-2,2),函數(shù)g(x)=f(x-1)+f(3-2x).
(1)求函數(shù)g(x)的定義域;
(2)若f(x)是奇函數(shù),且在定義域上單調(diào)遞減,求不等式g(x)≤0的解集.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).若的一個零點附近的函數(shù)值如下所示,請用二分法求出方程的一個正實數(shù)解的近似值(精確度0.1).,,,,,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在數(shù)列{an},{bn}中,a1=2,b1=4,且an,bn,an+1成等差數(shù)列,bn,an+1,bn+1成等比數(shù)列{n∈N+}.
求a2,a3,a4及b2,b3,b4,由此猜測{an},{bn}的通項公式,并證明你的結(jié)論;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)y=x+有如下性質(zhì):如果常數(shù)t>0,那么該函數(shù)在(0, ]上是減函數(shù),在[,+∞)上是增函數(shù).
(1)已知f(x)=,x∈[0,1],利用上述性質(zhì),求函數(shù)f(x)的單調(diào)區(qū)間和值域;
(2)對于(1)中的函數(shù)f(x)和函數(shù)g(x)=-x-2a,若對任意x1∈[0,1],總存在x2∈[0,1],使得g(x2)=f(x1)成立,求實數(shù)a的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com