精英家教網 > 高中數學 > 題目詳情

【題目】如圖,四棱錐P-ABCD中,底面ABCD為矩形,PA⊥平面ABCD,E為PD的中點.

(1) 證明:PB∥平面AEC

(2) 設二面角D-AE-C為60°,AP=1,AD=,求三棱錐E-ACD的體積

【答案】

【解析】試題分析:()連接BDACO點,連接EO,只要證明EO∥PB,即可證明PB∥平面AEC;()延長AEM連結DM,使得AM⊥DM,說明∠CMD=60°,是二面角的平面角,求出CD,即可三棱錐E-ACD的體積

試題解析:(1)證明:連接BDAC于點O,連接EO.

因為ABCD為矩形,所以OBD的中點.

EPD的中點,所以EO∥PB.

因為EO平面AEC,PB平面AEC,

所以PB∥平面AEC.

(2)因為PA⊥平面ABCDABCD為矩形,

所以AB,ADAP兩兩垂直.

如圖,以A為坐標原點, AD,AP的方向為xyz軸的正方向,||為單位長,建立空間直角坐標系Axyz,則D,E, .

B(m0,0)(m>0),則C(m,0), (m, 0)

n1(x,y,z)為平面ACE的法向量,

可取n1.

n2(1,0,0)為平面DAE的法向量,

由題設易知|cosn1,n2|,即

,解得m.

因為EPD的中點,所以三棱錐EACD的高為.三棱錐EACD的體積V××××.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=x3-3ax-1,a≠0.

(1)求f(x)的單調區(qū)間;

(2)若f(x)在x=-1處取得極值,直線y=m與y=f(x)的圖象有三個不同的交點,求m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某學校進行體驗,現得到所有男生的身高數據,從中隨機抽取50人進行統(tǒng)計(已知這50個身高介于155 到195之間),現將抽取結果按如下方式分成八組:第一組,第二組,…,第八組,并按此分組繪制如圖所示的頻率分布直方圖,其中第六組和第七組還沒有繪制完成,已知第一組與第八組人數相同,第六組和第七組人數的比為5:2.

(1)補全頻率分布直方圖;

(2)根據頻率分布直方圖估計這50位男生身高的中位數;

(3)用分層抽樣的方法在身高為內抽取一個容量為5的樣本,從樣本中任意抽取2位男生,求這兩位男生身高都在內的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,橢圓()的離心率是,過點(,)的動直線與橢圓相交于,兩點,當直線平行于軸時,直線被橢圓截得的線段長為

求橢圓的方程:

已知為橢圓的左端點,: 是否存在直線使得的面積為?若不存在,說明理由,若存在,求出直線的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系中,已知曲線 ,以平面直角坐標系的原點為極點, 軸的正半軸為極軸,取相同的單位長度建立極坐標系,已知直線 .

(1)將曲線上的所有點的橫坐標、縱坐標分別伸長為原來的、2倍后得到曲線,求的參數方程;

(2)在曲線上求一點,使點到直線的距離最大,并求出此最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在直角坐標系中,曲線的參數方程為為參數),以原點為極點, 軸正半軸為極軸,建立極坐標系,直線的極坐標方程為

(1)求曲線的普通方程與直線的直角坐標方程;

(2)設為曲線上的動點,求點的直線的距離的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設集合A{x|(x3)(xa)<0,a∈R},集合B{xZ|x23x4<0}

(1)AB的子集個數為4,求a的范圍;

(2)aZ,當AB時,求a的最小值,并求當a取最小值時AB.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知, 。

1)寫出的解析式與定義域;

2)畫出函數的圖像;

3)試討論方程的根的個數

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設U=R,集合A={x|x2+3x+2=0},B={x|x2+(m+1)x+m=0},若(A)B=,求m的值.

查看答案和解析>>

同步練習冊答案