【題目】如圖,四棱錐P-ABCD中,底面ABCD為矩形,PA⊥平面ABCD,E為PD的中點.
(1) 證明:PB∥平面AEC
(2) 設二面角D-AE-C為60°,AP=1,AD=,求三棱錐E-ACD的體積
【答案】
【解析】試題分析:(Ⅰ)連接BD交AC于O點,連接EO,只要證明EO∥PB,即可證明PB∥平面AEC;(Ⅱ)延長AE至M連結DM,使得AM⊥DM,說明∠CMD=60°,是二面角的平面角,求出CD,即可三棱錐E-ACD的體積
試題解析:(1)證明:連接BD交AC于點O,連接EO.
因為ABCD為矩形,所以O為BD的中點.
又E為PD的中點,所以EO∥PB.
因為EO平面AEC,PB平面AEC,
所以PB∥平面AEC.
(2)因為PA⊥平面ABCD,ABCD為矩形,
所以AB,AD,AP兩兩垂直.
如圖,以A為坐標原點, ,AD,AP的方向為x軸y軸z軸的正方向,||為單位長,建立空間直角坐標系Axyz,則D,E, =.
設B(m,0,0)(m>0),則C(m, ,0), =(m, ,0).
設n1=(x,y,z)為平面ACE的法向量,
則即
可取n1=.
又n2=(1,0,0)為平面DAE的法向量,
由題設易知|cos〈n1,n2〉|=,即
=,解得m=.
因為E為PD的中點,所以三棱錐EACD的高為.三棱錐EACD的體積V=××××=.
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=x3-3ax-1,a≠0.
(1)求f(x)的單調區(qū)間;
(2)若f(x)在x=-1處取得極值,直線y=m與y=f(x)的圖象有三個不同的交點,求m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某學校進行體驗,現得到所有男生的身高數據,從中隨機抽取50人進行統(tǒng)計(已知這50個身高介于155 到195之間),現將抽取結果按如下方式分成八組:第一組,第二組,…,第八組,并按此分組繪制如圖所示的頻率分布直方圖,其中第六組和第七組還沒有繪制完成,已知第一組與第八組人數相同,第六組和第七組人數的比為5:2.
(1)補全頻率分布直方圖;
(2)根據頻率分布直方圖估計這50位男生身高的中位數;
(3)用分層抽樣的方法在身高為內抽取一個容量為5的樣本,從樣本中任意抽取2位男生,求這兩位男生身高都在內的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,橢圓()的離心率是,過點(,)的動直線與橢圓相交于,兩點,當直線平行于軸時,直線被橢圓截得的線段長為.
⑴求橢圓的方程:
⑵已知為橢圓的左端點,問: 是否存在直線使得的面積為?若不存在,說明理由,若存在,求出直線的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,已知曲線: ,以平面直角坐標系的原點為極點, 軸的正半軸為極軸,取相同的單位長度建立極坐標系,已知直線: .
(1)將曲線上的所有點的橫坐標、縱坐標分別伸長為原來的、2倍后得到曲線,求的參數方程;
(2)在曲線上求一點,使點到直線的距離最大,并求出此最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,曲線的參數方程為(為參數),以原點為極點, 軸正半軸為極軸,建立極坐標系,直線的極坐標方程為.
(1)求曲線的普通方程與直線的直角坐標方程;
(2)設為曲線上的動點,求點的直線的距離的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設集合A={x|(x-3)(x+a)<0,a∈R},集合B={x∈Z|x2-3x-4<0}.
(1)若A∩B的子集個數為4,求a的范圍;
(2)若a∈Z,當A∩B≠時,求a的最小值,并求當a取最小值時A∪B.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com