【題目】從正方體ABCD﹣A1B1C1D1的8個頂點中任意取4個不同的頂點,這4個頂點可能是:
1)矩形的4個頂點;
2)每個面都是等邊三角形的四面體的4個頂點;
3)每個面都是直角三角形的四面體的4個頂點;
4)有三個面是等腰直角三角形,有一個面是等邊三角形的四面體的4個頂點.
其中正確結(jié)論的個數(shù)為 .
【答案】4
【解析】解:如圖所示:
四邊形ABCD為矩形,故(1)滿足條件;
四面體D﹣A1BC1為每個面均為等邊三角形的四面體,故(2)滿足條件;
四面體D﹣B1C1D1為每個面都是直角三角形的四面體,故(3)滿足條件;
四面體C﹣B1C1D1為有三個面是等腰直角三角形,有一個面是等邊三角形的四面體,故(4)滿足條件;
故正確的結(jié)論有4個
所以答案是:4
【考點精析】利用棱柱的結(jié)構(gòu)特征對題目進(jìn)行判斷即可得到答案,需要熟知兩底面是對應(yīng)邊平行的全等多邊形;側(cè)面、對角面都是平行四邊形;側(cè)棱平行且相等;平行于底面的截面是與底面全等的多邊形.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC三個頂點坐標(biāo)分別為:A(1,0),B(1,4),C(3,2),直線l經(jīng)過點(0,4).
(1)求△ABC外接圓⊙M的方程;
(2)若直線l與⊙M相交于P,Q兩點,且|PQ|=2 ,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為對考生的月考成績進(jìn)行分析,某地區(qū)隨機抽查了名考生的成績,根據(jù)所得數(shù)據(jù)畫了如下的樣本頻率分布直方圖.
(1)求成績在的頻率;
(2)根據(jù)頻率分布直方圖算出樣本數(shù)據(jù)的中位數(shù);
(3)為了分析成績與班級、學(xué)校等方面的關(guān)系,必須按成績再從這人中用分層抽樣方法抽取出人作出進(jìn)一步分析,則成績在的這段應(yīng)抽多少人?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在銳角△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,且2asin B=b.
(1)求角A的大; (2)若a=6,b+c=8,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) , .
(1)若存在極值點1,求的值;
(2)若存在兩個不同的零點,求證: (為自然對數(shù)的底數(shù), ).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓: 的短軸長為2,且函數(shù)的圖象與橢圓僅有兩個公共點,過原點的直線與橢圓交于兩點.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)點為線段的中垂線與橢圓的一個公共點,求面積的最小值,并求此時直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓: ( )的左右焦點分別為, ,離心率為,點在橢圓上, , ,過與坐標(biāo)軸不垂直的直線與橢圓交于, 兩點, 為, 的中點.
(Ⅰ)求橢圓的方程;
(Ⅱ)已知點,且,求直線所在的直線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2017 年省內(nèi)某事業(yè)單位面向社會公開招騁工作人員,為保證公平競爭,報名者需要參加筆試和面試兩部分,且要求筆試成績必須大于或等于分的才有資格參加面試, 分以下(不含分)則被淘汰,現(xiàn)有名競騁者參加筆試,參加筆試的成績按區(qū)間分段,其頻率分布直方圖如圖所示(頻率分布直方圖有污損),但是知道參加面試的人數(shù)為,且筆試成績在的人數(shù)為.
(1)根據(jù)頻率分布直方圖,估算競騁者參加筆試的平均成績;
(2)若在面試過程中每人最多有次選題答題的機會,累計答對題或答錯題, 答對題者方可參加復(fù)賽,已知面試者甲答對每一個問題的概率都相同,并且相互之間沒有影響,若他連續(xù)三次答題中答對一次的概率為,求面試者甲答題個數(shù)的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【2013江蘇,理17】如圖,在平面直角坐標(biāo)系xOy中,點A(0,3),直線l:y=2x-4.設(shè)圓C的半徑為1,圓心在l上.
(1)若圓心C也在直線y=x-1上,過點A作圓C的切線,求切線的方程;
(2)若圓C上存在點M,使MA=2MO,求圓心C的橫坐標(biāo)a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com