【題目】已知函數(shù).
(1)當(dāng)時(shí),求在點(diǎn)處的切線方程;
(2)當(dāng)時(shí),求函數(shù)的單調(diào)遞增區(qū)間;
(3)當(dāng)時(shí),證明: (其中為自然對(duì)數(shù)的底數(shù)).
【答案】(1) ;(2)答案見解析;(3)證明見解析
【解析】試題分析:(1)根據(jù)導(dǎo)數(shù)的幾何意義得到 ;(2)對(duì)函數(shù)求導(dǎo),分類討論導(dǎo)函數(shù)的正負(fù),得到單調(diào)區(qū)間;(3)由 知需證明.,對(duì)函數(shù)求導(dǎo),研究函數(shù)的最值即可。
解析:
(1)當(dāng)時(shí), ,
∴
∴在點(diǎn)處的切線方程是.
(2)的定義域?yàn)?/span>
當(dāng),即當(dāng)時(shí),由解得或
當(dāng)時(shí), ,
當(dāng),即當(dāng)時(shí),由解得或
綜上:當(dāng)時(shí), 的單調(diào)遞增區(qū)間是,
當(dāng)時(shí), 的單調(diào)遞增區(qū)間是
當(dāng)時(shí), 的單調(diào)遞增區(qū)間是,
(3)當(dāng)時(shí),由 知需證明
令 ,
設(shè),則
當(dāng)時(shí), , 單調(diào)遞減
當(dāng)時(shí), , 單調(diào)遞增
∴當(dāng)時(shí), 取得唯一的極小值,也是最小值
的最小值是
另解:證明(“”不能同時(shí)成立)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為增強(qiáng)市民的節(jié)能環(huán)保意識(shí),汕頭市面向全市征召義務(wù)宣傳志愿者,從符合條件的 500 名志愿者中隨機(jī)抽取 100 名,其年齡頻率分布直方圖如圖所示,其中年齡分組區(qū)是:
,
(1)求圖中的值,并根據(jù)頻率分布直方圖估計(jì)這 500 名志愿者中年齡在歲的人數(shù);
(2)在抽出的 100 名志愿者中按年齡采用分層抽樣的方法抽取 10 名參加人民廣場的宣傳活動(dòng),再從這 10 名志愿者中選取 3 名擔(dān)任主要負(fù)責(zé)人.記這 3 名志愿者中“年齡低于 35 歲”的人數(shù)為 ,求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)=ex-ax-1.
(1)求f(x)的單調(diào)增區(qū)間;
(2)若f(x)在定義域R內(nèi)單調(diào)遞增,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)求函數(shù)的最小正周期;
(2)求函數(shù)的單調(diào)遞增區(qū)間;
(3)若把向右平移個(gè)單位得到函數(shù),求在區(qū)間上的最小值和最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在吸煙與患肺癌這兩個(gè)分類變量的獨(dú)立性檢驗(yàn)的計(jì)算中,下列說法正確的是( )
A. 若的觀測值為,在犯錯(cuò)誤的概率不超過的前提下認(rèn)為吸煙與患肺癌有關(guān)系,那么在100個(gè)吸煙的人中必有99人患有肺癌.
B. 由獨(dú)立性檢驗(yàn)可知,在犯錯(cuò)誤的概率不超過的前提下認(rèn)為吸煙與患肺癌有關(guān)系時(shí),我們說某人吸煙,那么他有的可能患有肺癌.
C. 若從統(tǒng)計(jì)量中求出在犯錯(cuò)誤的概率不超過的前提下認(rèn)為吸煙與患肺癌有關(guān)系,是指有的可能性使得判斷出現(xiàn)錯(cuò)誤.
D. 以上三種說法都不正確.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓錐曲線 (是參數(shù))和定點(diǎn),、是圓錐曲線的左、右焦點(diǎn).
(1)求經(jīng)過點(diǎn)且垂直于直線的直線的參數(shù)方程;
(2)以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,求直線的極坐標(biāo)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)若方程只有一解,求實(shí)數(shù)的取值范圍;
(Ⅱ)設(shè)函數(shù),若對(duì)任意正實(shí)數(shù), 恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)是定義在上的奇函數(shù).
(1)求函數(shù)的解析式;
(2)求不等式的解集;
(3)若在上有兩個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com