【題目】為增強(qiáng)市民的節(jié)能環(huán)保意識(shí),汕頭市面向全市征召義務(wù)宣傳志愿者,從符合條件的 500 名志愿者中隨機(jī)抽取 100 名,其年齡頻率分布直方圖如圖所示,其中年齡分組區(qū)是:
,
(1)求圖中的值,并根據(jù)頻率分布直方圖估計(jì)這 500 名志愿者中年齡在歲的人數(shù);
(2)在抽出的 100 名志愿者中按年齡采用分層抽樣的方法抽取 10 名參加人民廣場(chǎng)的宣傳活動(dòng),再?gòu)倪@ 10 名志愿者中選取 3 名擔(dān)任主要負(fù)責(zé)人.記這 3 名志愿者中“年齡低于 35 歲”的人數(shù)為 ,求的分布列及數(shù)學(xué)期望.
【答案】(I)150(人);(II)見(jiàn)解析.
【解析】試題分析:(1)先根據(jù)頻率分布直方圖小矩形得面積等于頻率,所有小長(zhǎng)方形面積和為1得對(duì)應(yīng)概率,再根據(jù)頻數(shù)等于總數(shù)與概率乘積得結(jié)果(2)先確定隨機(jī)變量可能取法,再根據(jù)組合數(shù)求各自概率,列表可得分布列,最后根據(jù)數(shù)學(xué)期望公式求期望
試題解析:(I)∵小矩形得面積等于頻率,∴除外得頻率和為0.70,∴
500名志愿者中,年齡在歲的人數(shù)為(人)
(II)用分層抽樣的方法,從中選取 10 名,則其中年齡“低于 35 歲”的人有 6 名,“年齡不低于35 歲”的人有 4 名,故的可能取值為 0,1,2,3.
, ,
, .
故的分布列為
0 | 1 | 2 | 3 | |
所以.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)為集合的子集,且,若,則稱為集合的元“大同集”.
(1)寫(xiě)出實(shí)數(shù)集的一個(gè)二元“大同集”;
(2)是否存在正整數(shù)集的二元“大同集”,請(qǐng)說(shuō)明理由;
(3)求出正整數(shù)集的所有三元“大同集”.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的兩個(gè)焦點(diǎn)與短軸的一個(gè)端點(diǎn)是等邊三角形的三個(gè)頂點(diǎn),且長(zhǎng)軸長(zhǎng)為4.
求橢圓E的方程;
若A是橢圓E的左頂點(diǎn),經(jīng)過(guò)左焦點(diǎn)F的直線l與橢圓E交于C,D兩點(diǎn),求與為坐標(biāo)原點(diǎn)的面積之差絕對(duì)值的最大值.
已知橢圓E上點(diǎn)處的切線方程為,T為切點(diǎn)若P是直線上任意一點(diǎn),從P向橢圓E作切線,切點(diǎn)分別為N,M,求證:直線MN恒過(guò)定點(diǎn),并求出該定點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形與梯形所在的平面相互垂直, ,點(diǎn)在線段上.
(1)證明:平面平面;
(2)若平面,求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)有兩個(gè)零點(diǎn).
(1)求的取值范圍;
(2)是否存在實(shí)數(shù), 對(duì)于符合題意的任意,當(dāng) 時(shí)均有?
若存在,求出所有的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】三角形的面積為,其中,,為三角形的邊長(zhǎng),為三角形內(nèi)切圓的半徑,則利用類比推理,可得出四面體的體積為( )
A.
B.
C. ,(為四面體的高)
D. ,(,,,分別為四面體的四個(gè)面的面積,為四面體內(nèi)切球的半徑)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線上點(diǎn)處的切線方程為.
(Ⅰ)求拋物線的方程;
(Ⅱ)設(shè)和為拋物線上的兩個(gè)動(dòng)點(diǎn),其中且,線段的垂直平分線與軸交于點(diǎn),求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求在點(diǎn)處的切線方程;
(2)當(dāng)時(shí),求函數(shù)的單調(diào)遞增區(qū)間;
(3)當(dāng)時(shí),證明: (其中為自然對(duì)數(shù)的底數(shù)).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com