【題目】已知f(x)=ex-ax-1.
(1)求f(x)的單調(diào)增區(qū)間;
(2)若f(x)在定義域R內(nèi)單調(diào)遞增,求a的取值范圍.
【答案】(1)當(dāng)a≤0時(shí),f(x)的單調(diào)增區(qū)間為(-∞,+∞);當(dāng)a>0時(shí),f(x)的單調(diào)增區(qū)間為(lna,+∞).(2)(-∞,0].
【解析】試題分析:(1),根據(jù)其導(dǎo)函數(shù)的解即的情況討論的符號(hào),即得其單調(diào)區(qū)間;(2)若在定義域內(nèi)單調(diào)遞增,則恒成立,所以恒成立,即即得的取值范圍.
試題解析:(1)∵f(x)=ex-ax-1(x∈R),∴f′(x)=ex-a.令f′(x)≥0,得ex≥a.當(dāng)a≤0時(shí),f′(x)>0在R上恒成立;當(dāng)a>0時(shí),有x≥ln a.綜上,當(dāng)a≤0時(shí),f(x)的單調(diào)增區(qū)間為(-∞,+∞);當(dāng)a>0時(shí),f(x)的單調(diào)增區(qū)間為(ln a,+∞).
(2)由(1)知f′(x)=ex-a.∵f(x)在R上單調(diào)遞增,
∴f′(x)=ex-a≥0恒成立,即a≤ex在R上恒成立.
∵x∈R時(shí),ex>0,∴a≤0,
即a的取值范圍是(-∞,0].
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】唐三彩,中國古代陶瓷燒制工藝的珍品,它吸取了中國國畫、雕塑等工藝美術(shù)的特點(diǎn),在中國文化中占有重要的歷史地位,在中國的陶瓷史上留下了濃墨重彩的一筆.唐三彩的生產(chǎn)至今已有1300多年的歷史,對(duì)唐三彩的復(fù)制和仿制工藝,至今也有百余年的歷史,某陶瓷廠在生產(chǎn)過程中,對(duì)仿制的100件工藝品測(cè)得其重量(單位: )數(shù)據(jù),將數(shù)據(jù)分組如下表:
(1)在答題卡上完成頻率分布表;
(2)以表中的頻率作為概率,估計(jì)重量落在中的概率及重量小于2.45的概率是多少?
(3)統(tǒng)計(jì)方法中,同一組數(shù)據(jù)常用該組區(qū)間的中點(diǎn)值(例如區(qū)間的中點(diǎn)值是2.25作為代表.據(jù)此,估計(jì)這100個(gè)數(shù)據(jù)的平均值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市甲水廠每天生產(chǎn)萬噸的生活用水,其每天固定生產(chǎn)成本為萬元,居民用水的稅費(fèi)價(jià)格為每噸元,該市居民每天用水需求量是在(單位:萬噸)內(nèi)的隨機(jī)數(shù),經(jīng)市場(chǎng)調(diào)查,該市每天用水需求量的頻率分布直方圖如圖所示,設(shè)(單位:萬噸, )表示該市一天用水需求量(單位:萬元)表示甲水廠一天銷售生活用水的利潤(利潤=稅費(fèi)收入-固定生產(chǎn)成本),注:當(dāng)該市用水需求量超過萬噸時(shí),超過的部分居民可以用其他水廠生產(chǎn)的水,甲水廠只收成本廠供應(yīng)的稅費(fèi),該市每天用水需求量的概率用頻率估計(jì).
(1)求的值,并直接寫出表達(dá)式;
(2)求甲水廠每天的利潤不少于萬元的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以下四個(gè)關(guān)于圓錐曲線的命題:
①設(shè)A,B是兩個(gè)定點(diǎn),k為非零常數(shù),若|PA|-|PB|=k,則P的軌跡是雙曲線;
②過定圓C上一定點(diǎn)A作圓的弦AB,O為原點(diǎn),若.則動(dòng)點(diǎn)P的軌跡是橢圓;
③方程的兩根可以分別作為橢圓和雙曲線的離心率;
④雙曲線與橢圓有相同的焦點(diǎn).
其中正確命題的序號(hào)為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) .
(1)當(dāng)時(shí),求函數(shù)的極值;
(2)是否存在實(shí)數(shù),使得當(dāng)時(shí),函數(shù)的最大值為?若存在,取實(shí)數(shù)的取值范圍,若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在底面是直角梯形的四棱錐S-ABCD中,面.
(1)求四棱錐S-ABCD的體積;
(2)求證:面
(3)求SC與底面ABCD所成角的正切值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2018年1月8日,中共中央國務(wù)院隆重舉行國家科學(xué)技術(shù)獎(jiǎng)勵(lì)大會(huì),在科技界引發(fā)熱烈反響,自主創(chuàng)新正成為引領(lǐng)經(jīng)濟(jì)社會(huì)發(fā)展的強(qiáng)勁動(dòng)力.某科研單位在研發(fā)新產(chǎn)品的過程中發(fā)現(xiàn)了一種新材料,由大數(shù)據(jù)測(cè)得該產(chǎn)品的性能指標(biāo)值y與這種新材料的含量x(單位:克)的關(guān)系為:當(dāng)時(shí),y是x的二次函數(shù);當(dāng)時(shí),測(cè)得數(shù)據(jù)如下表(部分):
x(單位:克) | 0 | 1 | 2 | 9 | … |
y | 0 | 3 | … |
(1)求y關(guān)于x的函數(shù)關(guān)系式;
(2)當(dāng)該產(chǎn)品中的新材料含量x為何值時(shí),產(chǎn)品的性能指標(biāo)值最大.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題:①在線性回歸模型中,相關(guān)指數(shù)表示解釋變量對(duì)于預(yù)報(bào)變量的貢獻(xiàn)率, 越接近于1,表示回歸效果越好;②兩個(gè)變量相關(guān)性越強(qiáng),則相關(guān)系數(shù)的絕對(duì)值就越接近于1;③在回歸直線方程中,當(dāng)解釋變量每增加一個(gè)單位時(shí),預(yù)報(bào)變量平均減少0.5個(gè)單位;④對(duì)分類變量與,它們的隨機(jī)變量的觀測(cè)值來說, 越小,“與有關(guān)系”的把握程度越大.其中正確命題的個(gè)數(shù)是( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com