【題目】對(duì)于定義在上的函數(shù),若存在實(shí)數(shù))使得對(duì)于任意 都有成立,則稱函數(shù)是帶狀函數(shù);若存在最小值,則稱為帶寬.

1)判斷函數(shù) 是不是帶狀函數(shù)?如果是,指出帶寬(不用證明);如果不是,請(qǐng)說(shuō)明理由;

2)求證:函數(shù))是帶狀函數(shù);

3)求證:函數(shù)是帶狀函數(shù)的充要條件是.

【答案】1)是,帶寬為2;(2)證明見(jiàn)解析;(3)證明見(jiàn)解析

【解析】

1)根據(jù)函數(shù)關(guān)系,即可判定是帶狀函數(shù);

2)分別證明即可得證;

3)處理絕對(duì)值,將函數(shù)寫成分段函數(shù)形式,分別證明充分性和必要性.

1)考慮兩條直線,即: ,

斷函數(shù) 是帶狀函數(shù),帶寬為2;

2)函數(shù)),

當(dāng)時(shí),所以有,有

當(dāng)時(shí),,即

所以有,所以

綜上所述,

所以函數(shù))是帶狀函數(shù);

3)函數(shù),

充分性:當(dāng)時(shí),,

,存在兩條直線滿足題意,即該函數(shù)為帶狀函數(shù);

必要性:當(dāng)為帶狀函數(shù),

則存在

假設(shè)

不妨考慮,

則直線與兩條直線中至少一條相交,所以不滿足

所以不滿足題意.,

綜上所述:函數(shù)是帶狀函數(shù)的充要條件是.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某城市戶居民的月平均用電量(單位:度),以,,,,分組的頻率分布直方圖如圖.

1)求直方圖中的值;

2)求月平均用電量的眾數(shù)和中位數(shù);

3)在月平均用電量為,,的四組用戶中,用分層抽樣的方法抽取戶居民,則月平均用電量在的用戶中應(yīng)抽取多少戶?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)當(dāng)時(shí),若,求的取值范圍;

2)若定義在上奇函數(shù)滿足,且當(dāng)時(shí),,求上的解析式;

3)對(duì)于(2)中的,若關(guān)于的不等式上恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某人有4種顏色的燈泡(每種顏色的燈泡足夠多),要在如圖所示的6個(gè)點(diǎn)A、B、C、A1、、B1、C1上各裝一個(gè)燈泡,要求同一條線段兩端的燈泡不同色,則每種顏色的燈泡都至少用一個(gè)的安裝方法共有 種(用數(shù)字作答).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著城市地鐵建設(shè)的持續(xù)推進(jìn),市民的出行也越來(lái)越便利,根據(jù)大數(shù)據(jù)統(tǒng)計(jì),某條地鐵線路運(yùn)行時(shí),發(fā)車時(shí)間間隔(單位:分鐘)滿足: ,平均每班地鐵的載客人數(shù) (單位:人)與發(fā)車時(shí)間間隔近似地滿足函數(shù)關(guān)系:,

1)若平均每班地鐵的載客人數(shù)不超過(guò)1560人,試求發(fā)車時(shí)間間隔的取值范圍;

2)若平均每班地鐵每分鐘的凈收益為(單位:元),則當(dāng)發(fā)車時(shí)間間隔為多少時(shí),平均每班地鐵每分鐘的凈收益最大?并求出最大凈收益.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知, 為兩條不同的直線, 為兩個(gè)不同的平面,對(duì)于下列四個(gè)命題:

, , ,

,

其中正確命題的個(gè)數(shù)有(

A. 個(gè) B. 個(gè) C. 個(gè) D. 個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校高一學(xué)生有1000名學(xué)生參加一次數(shù)學(xué)小測(cè)驗(yàn),隨機(jī)抽取200名學(xué)生的測(cè)驗(yàn)成績(jī)得如圖所示的頻率分布直方圖:

1)求該學(xué)校高一學(xué)生隨機(jī)抽取的200名學(xué)生的數(shù)學(xué)平均成績(jī)和標(biāo)準(zhǔn)差(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值做代表);

2)試估計(jì)該校高一學(xué)生在這一次的數(shù)學(xué)測(cè)驗(yàn)成績(jī)?cè)趨^(qū)間之內(nèi)的概率是多少?測(cè)驗(yàn)成績(jī)?cè)趨^(qū)間之外有多少位學(xué)生?(參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】榆林市政府堅(jiān)持保護(hù)環(huán)境和節(jié)約資源,堅(jiān)持推進(jìn)生態(tài)文明建設(shè)。若市財(cái)政局下?lián)軐??/span>100百萬(wàn)元,分別用于植綠護(hù)綠和處理污染兩個(gè)生態(tài)維護(hù)項(xiàng)目,植綠護(hù)綠項(xiàng)目五年內(nèi)帶來(lái)的生態(tài)收益可表示為投放資金(單位:百萬(wàn)元)的函數(shù)(單位:百萬(wàn)元),處理污染項(xiàng)目五年內(nèi)帶來(lái)的生態(tài)收益可表示為投放資金單位:(單位:百萬(wàn)元)的函數(shù)(單位:百萬(wàn)元)

(1)設(shè)分配給植綠護(hù)綠項(xiàng)目的資金為(百萬(wàn)元),則兩個(gè)生態(tài)項(xiàng)目五年內(nèi)帶來(lái)的收益總和為y,寫出y關(guān)于的函數(shù)解析式和定義域;

(2)試求出y的最大值,并求出此時(shí)對(duì)兩個(gè)生態(tài)項(xiàng)目的投資分別為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列滿足,).

(Ⅰ)證明數(shù)列為等差數(shù)列,并求的通項(xiàng)公式;

(Ⅱ)設(shè)數(shù)列的前項(xiàng)和為,若數(shù)列滿足,且對(duì)任意的恒成立,求的最小值

查看答案和解析>>

同步練習(xí)冊(cè)答案