【題目】如圖所示的幾何體中,是菱形,,平面,,.

1)求證:平面平面

2)求平面與平面構(gòu)成的二面角的正弦值.

【答案】1)證明見解析;(2.

【解析】

1)取中點,連結(jié),設(shè),連結(jié),,先證明,

,可證得平面,又,故平面,即得證.

2)如圖所示的空間直角坐標(biāo)系,求解平面與平面的法向量,利用二面角的向量公式即得解.

1)證明:取中點,連結(jié),設(shè),連結(jié),

在菱形中,

平面,平面,,

,平面,平面,

,分別是,的中點,,

,,且

四邊形是平行四邊形,則,平面,

平面,平面平面.

2)由(1)中證明知,平面,則,,兩兩垂直,以,

,所在直線分別為軸,軸,軸建立如圖所示的空間直角坐標(biāo)系.

是菱形,

得,,,則,

,

,,,

設(shè)平面的一個法向量為

,即,

,求得,所以

同理,可求得平面的一個法向量為,

設(shè)平面與平面構(gòu)成的二面角的平面角為,則

,又,

平面與平面構(gòu)成的二面角的正弦值為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的焦距為4,且過點.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)設(shè)為橢圓上一點,過點軸的垂線,垂足為,取點,連接,過點的垂線交軸于點,點是點關(guān)于軸的對稱點,作直線,問這樣作出的直線是否與橢圓一定有唯一的公共點?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)在點處的切線方程為.

1)若函數(shù)存在單調(diào)遞減區(qū)間,求實數(shù)的取值范圍;

2)設(shè),對于,的值域為,若,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在五面體ABCDPN中,棱PA⊥面ABCD,AB=AP=2PN,底面ABCD是菱形,∠BAD=

(1)求證:PN∥AB;

(2)求NC與平面BDN所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)).以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

(1)若曲線上一點的極坐標(biāo)為,且過點,求的普通方程和的直角坐標(biāo)方程;

(2)設(shè)點,的交點為,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,四邊形ABCDBDEF均為菱形,,且

求證:平面BDEF;

求直線AD與平面ABF所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩個排球隊在采用勝制排球決賽中相遇,已知每局比賽中甲獲勝的概率是.

1)求比賽進(jìn)行了局就結(jié)束的概率;

2)若第局甲勝,兩隊又繼續(xù)進(jìn)行了局結(jié)束比賽,求的分布列和數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)討論的單調(diào)性;

2)若對任意,恰有一個零點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】ABC中,角A,B,C的對邊分別為ab,c,且(a+bc)(sinA+sinB+sinC)=bsinA

1)求C;

2)若a2,c5,求△ABC的面積.

查看答案和解析>>

同步練習(xí)冊答案