【題目】如圖,平面四邊形ABCD,,,將沿BD翻折到與面BCD垂直的位置.

證明:面ABC;

若E為AD中點(diǎn),求二面角的大小.

【答案】(1)見證明;(2)

【解析】

推導(dǎo)出面BCD,從而,再求出,,,由此能證明平面ABC.

以B為原點(diǎn),在平面BCD中,過B作BD的垂線為x軸,以BD為y軸,以BA為z軸,建立空間直角坐標(biāo)系,利用向量法能求出二面角的大小.

證明:平面四邊形ABCD,,,,

面BCD,,面平面,

面BCD,,

,,,

,,

,平面ABC.

解:面BCD,如圖以B為原點(diǎn),在平面BCD中,過B作BD的垂線為x軸,

以BD為y軸,以BA為z軸,建立空間直角坐標(biāo)系,

0,,0,,,

是AD的中點(diǎn),

,

令平面BCE的一個(gè)法向量為y,,

,取,得,

面ABC,平面ABC的一個(gè)法向量為

,,

二面角的大小為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),,若對(duì)任意成立,且數(shù)列滿足:.

(1)求函數(shù)的解析式;

(2)求證:;

(3)求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程(t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為:

直線l的參數(shù)方程化為極坐標(biāo)方程;

求直線l與曲線C交點(diǎn)的極坐標(biāo)其中,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)列{n}中1=3,已知點(diǎn)(nn+1)在直線y=x+2上,

(1)求數(shù)列{n}的通項(xiàng)公式;

(2)若bnn3n,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率,一條準(zhǔn)線方程為

⑴求橢圓的方程;

⑵設(shè)為橢圓上的兩個(gè)動(dòng)點(diǎn),為坐標(biāo)原點(diǎn),且

①當(dāng)直線的傾斜角為時(shí),求的面積;

②是否存在以原點(diǎn)為圓心的定圓,使得該定圓始終與直線相切?若存在,請(qǐng)求出該定圓方程;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】共享單車給市民出行帶來了諸多便利,某公司購(gòu)買了一批單車投放到某地給市民使用.據(jù)市場(chǎng)分析,每輛單車的營(yíng)運(yùn)累計(jì)收入 (單位:元)與營(yíng)運(yùn)天數(shù)滿足.

(1)要使?fàn)I運(yùn)累計(jì)收入高于800元,求營(yíng)運(yùn)天數(shù)的取值范圍;

(2)每輛單車營(yíng)運(yùn)多少天時(shí),才能使每天的平均營(yíng)運(yùn)收入最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若對(duì)于曲線f(x)=-exx(e為自然對(duì)數(shù)的底數(shù))的任意切線l1,總存在曲線g(x)=ax+2cosx的切線l2,使得l1l2,則實(shí)數(shù)a的取值范圍為________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱錐中,點(diǎn)在以為直徑的圓上,平面平面,點(diǎn)在線段上,且,,,點(diǎn)的重心,點(diǎn)的中點(diǎn).

(1)求證:平面;

(2)求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的左,右焦點(diǎn),,上頂點(diǎn)為,,為橢圓上任意一點(diǎn),且的面積最大值為.

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)若點(diǎn).為橢圓上的兩個(gè)不同的動(dòng)點(diǎn),且為坐標(biāo)原點(diǎn)),則是否存在常數(shù),使得點(diǎn)到直線的距離為定值?若存在,求出常數(shù)和這個(gè)定值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案