【題目】已知橢圓的離心率,一條準線方程為

⑴求橢圓的方程;

⑵設(shè)為橢圓上的兩個動點,為坐標原點,且

①當直線的傾斜角為時,求的面積;

②是否存在以原點為圓心的定圓,使得該定圓始終與直線相切?若存在,請求出該定圓方程;若不存在,請說明理由.

【答案】12①SGOH②x2y2

【解析】

(1)因為,,a2b2c2,

解得a3,b,所以橢圓方程為

(2)①解得

所以OG,OH,所以SGOH.

假設(shè)存在滿足條件的定圓,設(shè)圓的半徑為R,則OG·OHR·GH

因為OG2OH2GH2,故,

OGOH的斜率均存在時,不妨設(shè)直線OG方程為ykx,

所以OG2

同理可得OH2,(OG2中的k換成-可得),R,

OGOH的斜率有一個不存在時,可得,

故滿足條件的定圓方程為:x2y2

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知、、是同一平面上不共線的四點,若存在一組正實數(shù)、,使得,則三個角、( )

A. 都是鈍角B. 至少有兩個鈍角

C. 恰有兩個鈍角D. 至多有兩個鈍角

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在棱長為2的正方體中, , , 分別是棱, , , 的中點,點, 分別在棱, 上移動,且.

(1)當時,證明:直線平面

(2)是否存在,使面與面所成的二面角為直二面角?若存在,求出的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖是由容量為100的樣本得到的頻率分布直方圖.其中前4組的頻率成等比數(shù)列,后6組的頻數(shù)成等差數(shù)列,設(shè)最大頻率為a,在之間的數(shù)據(jù)個數(shù)為b,則a,b的值分別為(

A.,78

B.83

C.,78

D.,83

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,某公園內(nèi)有兩條道路,現(xiàn)計劃在上選擇一點,新建道路,并把所在的區(qū)域改造成綠化區(qū)域.已知,

(1)若綠化區(qū)域的面積為1,求道路的長度;

(2)若綠化區(qū)域改造成本為10萬元/,新建道路成本為10萬元/.設(shè)),當為何值時,該計劃所需總費用最?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,平面四邊形ABCD,,,,將沿BD翻折到與面BCD垂直的位置.

證明:面ABC;

若E為AD中點,求二面角的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4—5: 不等式選講

已知函數(shù)f(x) 的定義域為R.

()求實數(shù)m的取值范圍;

()m的最大值為n,當正數(shù)a,b滿足 n時,求7a4b的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列命題中,假命題的是( )

A.一條直線與兩個平行平面中的一個相交,則必與另一個平面相交.

B.平行于同一平面的兩條直線一定平行.

C.如果平面不垂直于平面,那么平面內(nèi)一定不存在直線垂直于平面.

D.若直線不平行于平面,且不在平面內(nèi),則在平面內(nèi)不存在與平行的直線.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知定點,定直線,動圓經(jīng)過點且與直線相切.

(I)求動圓圓心的軌跡方程;

(II)設(shè)點為曲線上不同的兩點,且,過兩點分別作曲線的兩條切線,且二者相交于點,求面積的最小值.

查看答案和解析>>

同步練習冊答案