精英家教網 > 高中數學 > 題目詳情

【題目】設函數,,若對任意成立,且數列滿足:,.

(1)求函數的解析式;

(2)求證:;

(3)求證:.

【答案】(1);(2)(證明略);(3)(證明略)

【解析】

(1)由題令,解x=-1,所以-4≤f(-1)≤-4,則f(-1)=-4,得a=b-4,進而得對任意成立,由判別式整理解得b=2,即可得a=-2,則f(x)可求;(2)由,進而,累乘得(3)由(2),累加得,再由證明數列遞增,得則證得;欲證,即證,則需證,由,放縮歸納得,再證明即可

(1)由題對任意成立,

,解x=-1,所以-4≤f(-1)≤-4,則f(-1)=-4

,則f(-1)=a-b=-4,即a=b-4

所以對任意成立,即,則整理得∴b=2,則a=-2

所以

(2)由(1)知,,∴, ∴

,所以

(3)由(2)知

所以

所以

,又,為遞增數列,所以所以

由(2)可知,欲證,即證,則需證

,∴

所以

=

所以=2

因為2018<

所以,則>

所以證得,即證得

所以

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系中,如圖所示,已知橢圓的左、右頂點分別為,,右焦點為.設過點的直線,與此橢圓分別交于點,,其中,.

(1)設動點滿足:,求點的軌跡;

(2)設,,求點的坐標;

(3)設,求證:直線必過軸上的一定點(其坐標與無關),并求出該定點的坐標.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】給出下列四個結論:

①命題“”的否定是“,”;

②命題“若,則”的否定是“若,則”;

③命題“若,則”的否命題是“若,則”;

④若“是假命題,是真命題”,則命題,一真一假.

其中正確結論的個數為( )

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某旅游愛好者計劃從3個亞洲國家A1A2,A33個歐洲國家B1B2,B3中選擇2個國家去旅游.

(1)若從這6個國家中任選2個,求這2個國家都是亞洲國家的概率;

(2)若從亞洲國家和歐洲國家中各選1個,求這兩個國家包括A1,但不包括B1的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知、、是同一平面上不共線的四點,若存在一組正實數、、,使得,則三個角、、( )

A. 都是鈍角B. 至少有兩個鈍角

C. 恰有兩個鈍角D. 至多有兩個鈍角

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的左焦點在拋物線的準線上,且橢圓的短軸長為2,分別為橢圓的左,右焦點,分別為橢圓的左,右頂點,設點在第一象限,且軸,連接交橢圓于點,直線的斜率為.

(Ⅰ)求橢圓的方程;

(Ⅱ)若三角形的面積等于四邊形的面積,求的值;

(Ⅲ)設點的中點,射線為原點)與橢圓交于點,滿足,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知命題p:函數f(x)x22mx1(2,+∞)上單調遞增;命題q:函數g(x)2x22(m2)x1的圖象恒在x軸上方,若pq為真,pq為假,求m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖所示,在四面體中,,平面平面,,且.

(1)證明:平面;

(2)設為棱的中點,當四面體的體積取得最大值時,求二面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,平面四邊形ABCD,,,將沿BD翻折到與面BCD垂直的位置.

證明:面ABC;

若E為AD中點,求二面角的大。

查看答案和解析>>

同步練習冊答案