【題目】為響應(yīng)“精確扶貧”號召,某企業(yè)計(jì)劃每年用不超過100萬元的資金購買單價(jià)分別為1500元/箱和3000元/箱的A、B兩種藥品捐獻(xiàn)給貧困地區(qū)某醫(yī)院,其中A藥品至少100箱,B藥品箱數(shù)不少于A藥品箱數(shù).則該企業(yè)捐獻(xiàn)給醫(yī)院的兩種藥品總箱數(shù)最多可為(
A.200
B.350
C.400
D.500

【答案】C
【解析】解:設(shè)A藥品為x箱,B藥品為y箱,該企業(yè)捐獻(xiàn)給醫(yī)院的兩種藥品總箱數(shù)為z=x+y, 則x,y滿足的關(guān)系式為 ,
若x+y=500,又因?yàn)椤輝,∴y≥250,
則0.15x+0.3y=0.15(500﹣y)+0.3y=75+0.15y>100,不合題意.
若x+y=400,又因?yàn)閥≥x,∴y≥200,
則0.15x+0.3y=0.15(400﹣y)+0.3y=60+0.15y≥90,合題意.
故選:C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)P與兩個(gè)定點(diǎn)O(0,0),A(-3,0)距離之比為.

(1)求點(diǎn)P的軌跡C方程;

(2)求過點(diǎn)M(2,3)且被軌跡C截得的線段長為2的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某知名品牌汽車深受消費(fèi)者喜愛,但價(jià)格昂貴.某汽車經(jīng)銷商推出A、B、C三種分期付款方式銷售該品牌汽車,并對近期100位采用上述分期付款的客戶進(jìn)行統(tǒng)計(jì)分析,得到如下的柱狀圖.已知從A、B、C三種分期付款銷售中,該經(jīng)銷商每銷售此品牌汽車1倆所獲得的利潤分別是1萬元,2萬元,3萬元.現(xiàn)甲乙兩人從該汽車經(jīng)銷商處,采用上述分期付款方式各購買此品牌汽車一輛.以這100位客戶所采用的分期付款方式的頻率代替1位客戶采用相應(yīng)分期付款方式的概率.
(1)求甲乙兩人采用不同分期付款方式的概率;
(2)記X(單位:萬元)為該汽車經(jīng)銷商從甲乙兩人購車中所獲得的利潤,求X的分布列與期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知sin(α+ )= ,α∈( ,π).求:
(1)cosα的值;
(2)sin(2α﹣ )的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= ,g(x)=lnx,其中e為自然對數(shù)的底數(shù).
(1)求函數(shù)y=f(x)g(x)在x=1處的切線方程;
(2)若存在x1 , x2(x1≠x2),使得g(x1)﹣g(x2)=λ[f(x2)﹣f(x1)]成立,其中λ為常數(shù),求證:λ>e;
(3)若對任意的x∈(0,1],不等式f(x)g(x)≤a(x﹣1)恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校的平面示意圖為如下圖五邊形區(qū)域ABCDE,其中三角形區(qū)域ABE為生活區(qū),四邊形區(qū)域BCDE為教學(xué)區(qū),AB,BC,CD,DE,EA,BE為學(xué)校的主要道路(不考慮寬度). ,
(1)求道路BE的長度;
(2)求生活區(qū)△ABE面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某程序框圖如圖所示,該程序運(yùn)行后輸出的S的值是(
A.3024
B.1007
C.2015
D.2016

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ln(x+a)﹣x,a∈R.
(1)當(dāng)a=﹣1時(shí),求f(x)的單調(diào)區(qū)間;
(2)若x≥1時(shí),不等式efx+ x2>1恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=|x﹣2a|+|x+ |
(1)當(dāng)a=1時(shí),求不等式f(x)>4的解集;
(2)若不等式f(x)≥m2﹣m+2 對任意實(shí)數(shù)x及a恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案