【題目】某知名品牌汽車深受消費(fèi)者喜愛(ài),但價(jià)格昂貴.某汽車經(jīng)銷商推出A、B、C三種分期付款方式銷售該品牌汽車,并對(duì)近期100位采用上述分期付款的客戶進(jìn)行統(tǒng)計(jì)分析,得到如下的柱狀圖.已知從A、B、C三種分期付款銷售中,該經(jīng)銷商每銷售此品牌汽車1倆所獲得的利潤(rùn)分別是1萬(wàn)元,2萬(wàn)元,3萬(wàn)元.現(xiàn)甲乙兩人從該汽車經(jīng)銷商處,采用上述分期付款方式各購(gòu)買此品牌汽車一輛.以這100位客戶所采用的分期付款方式的頻率代替1位客戶采用相應(yīng)分期付款方式的概率.
(1)求甲乙兩人采用不同分期付款方式的概率;
(2)記X(單位:萬(wàn)元)為該汽車經(jīng)銷商從甲乙兩人購(gòu)車中所獲得的利潤(rùn),求X的分布列與期望.
【答案】
(1)解:由題意得:
P(A)= =0.35,P(B)= =0.45,P(C)= =0.2,
∴甲乙兩人采用不同分期付款方式的概率:
p=1﹣[P(A)P(A)+P(B)P(B)+P(C)P(C)]=0.635
(2)解:記X(單位:萬(wàn)元)為該汽車經(jīng)銷商從甲乙兩人購(gòu)車中所獲得的利潤(rùn),
則X的可能取值為2,3,4,5,6,
P(X=2)=P(A)P(A)=0.35×0.35=0.1225,
P(X=3)=P(A)P(B)+P(B)P(A)=0.35×0.45+0.45×0.35=0.315,
P(X=4)=P(A)P(C)+P(B)P(B)+P(C)P(A)=0.35×0.2+0.45×0.45+0.2×0.35=0.3425,
P(X=5)=P(B)P(C)+P(C)P(B)=0.45×0.2+0.2×0.45=0.18,
P(X=6)=P(C)P(C)=0.2×0.2=0.04.
∴X的分布列為:
X | 2 | 3 | 4 | 5 | 6 |
P | 0.1225 | 0.315 | 0.3425 | 0.18 | 0.04 |
E(X)=0.1225×2+0.315×3+0.3425×4+0.18×5+0.04×6=3.7
【解析】(1)由題意得:P(A)= =0.35,P(B)= =0.45,P(C)= =0.2,利用對(duì)立事件概率計(jì)算公式能求出甲乙兩人采用不同分期付款方式的概率.(2)記X(單位:萬(wàn)元)為該汽車經(jīng)銷商從甲乙兩人購(gòu)車中所獲得的利潤(rùn),則X的可能取值為2,3,4,5,6,分別求出相應(yīng)的概率,由此能求出X的分布列和E(X).
【考點(diǎn)精析】掌握頻率分布直方圖和離散型隨機(jī)變量及其分布列是解答本題的根本,需要知道頻率分布表和頻率分布直方圖,是對(duì)相同數(shù)據(jù)的兩種不同表達(dá)方式.用緊湊的表格改變數(shù)據(jù)的排列方式和構(gòu)成形式,可展示數(shù)據(jù)的分布情況.通過(guò)作圖既可以從數(shù)據(jù)中提取信息,又可以利用圖形傳遞信息;在射擊、產(chǎn)品檢驗(yàn)等例子中,對(duì)于隨機(jī)變量X可能取的值,我們可以按一定次序一一列出,這樣的隨機(jī)變量叫做離散型隨機(jī)變量.離散型隨機(jī)變量的分布列:一般的,設(shè)離散型隨機(jī)變量X可能取的值為x1,x2,.....,xi,......,xn,X取每一個(gè)值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,則稱表為離散型隨機(jī)變量X 的概率分布,簡(jiǎn)稱分布列.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,面ABCD,,,E,F分別為線段AD,PA的中點(diǎn).
求證:平面平面BEF;
求證:平面PAC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題滿分10分)
某單位建造一間地面面積為12m2的背面靠墻的矩形小房,由于地理位置的限制,房子側(cè)面的長(zhǎng)度x不得超過(guò)米,房屋正面的造價(jià)為400元/m2,房屋側(cè)面的造價(jià)為150元/m2,屋頂和地面的造價(jià)費(fèi)用合計(jì)為5800元,如果墻高為3m,且不計(jì)房屋背面的費(fèi)用.
(1)把房屋總造價(jià)表示成的函數(shù),并寫(xiě)出該函數(shù)的定義域.
(2)當(dāng)側(cè)面的長(zhǎng)度為多少時(shí),總造價(jià)最底?最低總造價(jià)是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)探究函數(shù)在上的單調(diào)性;
(2)若關(guān)于的不等式在上恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知D= ,給出下列四個(gè)命題: P1:(x,y)∈D,x+y+1≥0;
P2:(x,y)∈D,2x﹣y+2≤0;
P3:(x,y)∈D, ≤﹣4;
P4:(x,y)∈D,x2+y2≤2.
其中真命題的是( )
A.P1 , P2
B.P2 , P3
C.P2 , P4
D.P3 , P4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=2lnx+ax﹣ (a∈R)在x=2處的切線經(jīng)過(guò)點(diǎn)(﹣4,ln2)
(1)討論函數(shù)f(x)的單調(diào)性;
(2)若不等式 >mx﹣1恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知集合且,設(shè).
若2,3,4,5,和2,3,4,5,,分別求S的值;
若集合A中所有元素之和為55,求S的最小值;
若集合A中所有元素之和為103,求S的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為響應(yīng)“精確扶貧”號(hào)召,某企業(yè)計(jì)劃每年用不超過(guò)100萬(wàn)元的資金購(gòu)買單價(jià)分別為1500元/箱和3000元/箱的A、B兩種藥品捐獻(xiàn)給貧困地區(qū)某醫(yī)院,其中A藥品至少100箱,B藥品箱數(shù)不少于A藥品箱數(shù).則該企業(yè)捐獻(xiàn)給醫(yī)院的兩種藥品總箱數(shù)最多可為( )
A.200
B.350
C.400
D.500
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】我國(guó)是世界上嚴(yán)重缺水的國(guó)家,某市政府為了鼓勵(lì)居民節(jié)約用水,計(jì)劃調(diào)整居民生活用水收費(fèi)方案,擬確定一個(gè)合理的月用水量標(biāo)準(zhǔn)(噸)、一位居民的月用水量不超過(guò)的部分按平價(jià)收費(fèi),超出的部分按議價(jià)收費(fèi).為了了解居民用水情況,通過(guò)抽樣,獲得了某年100位居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照[0,0.5),[0.5,1),…,[4,4.5]分成9組,制成了如圖所示的頻率分布直方圖.
(Ⅰ)求直方圖中a的值;
(Ⅱ)設(shè)該市有30萬(wàn)居民,估計(jì)全市居民中月均用水量不低于3噸的人數(shù),并說(shuō)明理由;
(Ⅲ)若該市政府希望使85%的居民每月的用水量不超過(guò)標(biāo)準(zhǔn)(噸),估計(jì)的值,并說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com