科目: 來源: 題型:
【題目】如圖,由點(diǎn)P(14,1),A(,0),B(0,)(),確定的△PAB的面積為18,則的值為_________,如果,則的值為_____________________
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,P為平行四邊形ABCD邊AD上一點(diǎn),E、F分別是PB、PC(靠近點(diǎn)P)的三等分點(diǎn),△PEF、△PDC、△PAB的面積分別為、、,若AD=2,AB=,∠A=60°,則的值為( )
A. B. C. D. 4
查看答案和解析>>
科目: 來源: 題型:
【題目】將拋物線向左平移2個(gè)單位,再向上平移4個(gè)單位得到一個(gè)新的拋物線.
(1)求新的拋物線的解析式.
(2)過作直線,使得直線與新的拋物線僅有一個(gè)公共點(diǎn),求直線的解析式及相應(yīng)公共點(diǎn)的坐標(biāo).
(3)請(qǐng)猜想在新的拋物線上是否有且僅有四個(gè)點(diǎn)、、、使得、、、分別與(2)中的所有公共點(diǎn)所圍成的圖形的面積均為S?若有,請(qǐng)求出S并直接寫出、、、的坐標(biāo),若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖所示,線段是⊙的直徑,過點(diǎn)作直線交⊙于、兩點(diǎn),過點(diǎn)作的角平分線交⊙于,過作的垂線交于
(1)證明是⊙的切線
(2)證明
(3)若⊙的直徑為10,,求
查看答案和解析>>
科目: 來源: 題型:
【題目】為節(jié)能減排,某公交公司計(jì)劃購買A型和B型兩種環(huán)保節(jié)能公交車共10輛,若購買A型公交車2輛,B型公交車3輛,共需650萬元;若購買A型公交車3輛,B型公交車2輛,共需600萬元.
(1)求購買A型和B型公交車每輛各需多少萬元?
(2)預(yù)計(jì)在該線路上A型和B型公交車每輛年均載客量分別為80萬人次和100萬人次.若該公司購買A型和B型公交車的總費(fèi)用不超過1200萬元,且確保這10輛公交車在該線路的年均載客總和不少于830萬人次,則該公司有哪幾種購車方案?哪種購車方案總費(fèi)用最少?最少總費(fèi)用是多少?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖所示,已知點(diǎn)的橫坐標(biāo)為2,將點(diǎn)向右平移2個(gè)單位,再向下平移2個(gè)單位得到點(diǎn),且、兩點(diǎn)均在雙曲線上.
(1)求反比例函數(shù)的解析式.(2)若直線于反比例函數(shù)的另一交點(diǎn)為,求的面積.
查看答案和解析>>
科目: 來源: 題型:
【題目】某中學(xué)為了解七年級(jí)400名學(xué)生讀書情況,隨機(jī)調(diào)查了七年級(jí)50名學(xué)生讀書的冊(cè)數(shù).統(tǒng)計(jì)數(shù)據(jù)如下表所示:
冊(cè)數(shù) | 0 | 1 | 2 | 3 | 4 |
人數(shù) | 3 | 13 | 16 | 17 | 1 |
(1)求這50個(gè)樣本數(shù)據(jù)的平均救,眾數(shù)和中位數(shù);
(2)根據(jù)樣本數(shù)據(jù),估計(jì)該校七年級(jí)400名學(xué)生在本次活動(dòng)中讀書多于3冊(cè)的人數(shù).
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,拋物線y=與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C.
(1)點(diǎn)P為線段BC上方拋物線上(不與B、C重合)的一動(dòng)點(diǎn),連接PC、PB,當(dāng)△PBC面積最大時(shí),在y軸找點(diǎn)D,使得PD﹣OD的值最小時(shí),求這個(gè)最小值.
(2)如圖2,拋物線對(duì)稱軸與x軸交于點(diǎn)K,與線段BC交于點(diǎn)M,在對(duì)稱軸上取一點(diǎn)R,使得KR=12(點(diǎn)R在第一象限),連接BR.已知點(diǎn)N為線段BR上一動(dòng)點(diǎn),連接MN,將△BMN沿MN翻折到△B'MN.當(dāng)△B'MN與△BMR重疊部分(如圖中的△MNQ)為直角三角形時(shí),直接寫出此時(shí)點(diǎn)B'的坐標(biāo).
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖1,在矩形ABCD中,AC為對(duì)角線,延長CD至點(diǎn)E使CE=CA,連接AE.F為AB上的一點(diǎn),且BF=DE,連接FC.
(1)若DE=1,CF=,求CD的長;
(2)如圖2,點(diǎn)G為線段AE的中點(diǎn),連接BG交AC于H,若∠BHC+∠ABG=60°,求證:AF+CE=AC.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com