【題目】某中學(xué)為了解七年級400名學(xué)生讀書情況,隨機調(diào)查了七年級50名學(xué)生讀書的冊數(shù).統(tǒng)計數(shù)據(jù)如下表所示:
冊數(shù) | 0 | 1 | 2 | 3 | 4 |
人數(shù) | 3 | 13 | 16 | 17 | 1 |
(1)求這50個樣本數(shù)據(jù)的平均救,眾數(shù)和中位數(shù);
(2)根據(jù)樣本數(shù)據(jù),估計該校七年級400名學(xué)生在本次活動中讀書多于3冊的人數(shù).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,AB為直徑,作OD⊥AB交AC于點D,延長BC,OD交于點F,過點C作⊙O的切線CE,交OF于點E.
(1)求證:EC=ED;
(2)如果OA=4,EF=3,求弦AC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形中,點為的中點,交于點,連接,下列結(jié)論:
①;
②;
③;
④若,則.
其中正確的結(jié)論是______________.(填寫所有正確結(jié)論的序號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)上的定點是指,一個含參數(shù)的函數(shù)無論參數(shù)取何值,函數(shù)的圖象都過某一個點,這個點稱為定點.例如,在函數(shù)y=kx中,當(dāng)x=0時,無論參數(shù)k取何值,函數(shù)值y=0,所以這個函數(shù)過定點(0,0).
(1)分別求函數(shù)y=kx+2k和y=kx2﹣kx+2019的定點;
(2)若過原點的兩條直線OA、OB分別與二次函數(shù)y=x2交于點A(m,m2)和點B(n,n2)(mn<0)且OA⊥OB,試求直線AB上的定點;
(3)若直線CD:y=kx+2k+5與拋物線y=x2交于C、D兩點,試在拋物線y=x2上找一定點E,使∠CED=90°,求點E的坐標(biāo),并求出點E到直線CD的最大距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個四位數(shù),記千位數(shù)字與百位數(shù)字之和為x,十位數(shù)字與個位數(shù)字之和為y,如果x=y,那么稱這個四位數(shù)為“平衡數(shù)”.
(1)最小的“平衡數(shù)”為 ;四位數(shù)A與4738之和為最大的“平衡數(shù)”,則A的值為 ;
(2)一個四位“平衡數(shù)”M,它的個位數(shù)字是千位數(shù)字a的3倍,百位數(shù)字與十位數(shù)字之和為8,且千位數(shù)字a使得二次函數(shù)y=(a﹣2)x2﹣(2a﹣3)x+a﹣3與x軸有兩個交點,求出所有滿足條件的“平衡數(shù)”M的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,P為平行四邊形ABCD邊AD上一點,E、F分別是PB、PC(靠近點P)的三等分點,△PEF、△PDC、△PAB的面積分別為、、,若AD=2,AB=,∠A=60°,則的值為( 。
A. B. C. D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,已知正比例函數(shù)y=x的圖象與反比例函數(shù)y=的圖象交于A(a,-2),B兩點.
(1)求反比例函數(shù)的表達(dá)式和點B的坐標(biāo);
(2)P是第一象限內(nèi)反比例函數(shù)圖象上一點,過點P作y軸的平行線,交直線AB于點C,連接PO,若△POC的面積為3,求點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知PA=2,PB=4,以AB為邊作等邊△ABC,使P、C落在直線AB的兩側(cè),連接PC.
(1)如圖,當(dāng)∠APB=30°時,
①按要求補全圖形;②求AB和PC的長.
(2)當(dāng)∠APB變化時,其它條件不變,則PC的最大值為 ,此時∠APB= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC的三個頂點的坐標(biāo)分別為A(﹣2,2)、B(﹣4,0)、C(﹣1,0).
(1)請直接寫出點A關(guān)于y軸對稱的點D的坐標(biāo);
(2)將△ABC繞坐標(biāo)原點O順時針旋轉(zhuǎn)90°得到△A1B1C1,請畫出△A1B1C1并求點A在這一旋轉(zhuǎn)中經(jīng)過的路程.
(3)將△ABC以點C為位似中心,放大2倍得到△A2B2C,請寫出一個點A2的坐標(biāo)并畫出△A2B2C.(所畫圖形必須在所給的網(wǎng)格內(nèi))
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com