科目: 來源: 題型:
【題目】如圖1是實驗室中的一種擺動裝置,BC在地面上,支架ABC是底邊為BC的等腰直角三角形,擺動臂AD可繞點A旋轉,擺動臂DM可繞點D旋轉,AD=30,DM=10.
(1)在旋轉過程中,
①當A,D,M三點在同一直線上時,求AM的長.
②當A,D,M三點為同一直角三角形的頂點時,求AM的長.
(2)若擺動臂AD順時針旋轉90°,點D的位置由△ABC外的點D1轉到其內的點D2處,連結D1D2,如圖2,此時∠AD2C=135°,CD2=60,求BD2的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標系xOy中,拋物線,與x軸交于點C,點C在點D的左側,與y軸交于點A.
求拋物線頂點M的坐標;
若點A的坐標為,軸,交拋物線于點B,求點B的坐標;
在的條件下,將拋物線在B,C兩點之間的部分沿y軸翻折,翻折后的圖象記為G,若直線與圖象G有一個交點,結合函數的圖象,求m的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】下面是小元設計的“過圓上一點作圓的切線”的尺規(guī)作圖過程.
已知:如圖,⊙O及⊙O上一點P.
求作:過點P的⊙O的切線.
作法:如圖,
①作射線OP;
②在直線OP外任取一點A,以點A為圓心,AP為半徑作⊙A,與射線OP交于另一點B;
③連接并延長BA與⊙A交于點C;
④作直線PC;
則直線PC即為所求.
根據小元設計的尺規(guī)作圖過程,
(1)使用直尺和圓規(guī),補全圖形;(保留作圖痕跡)
(2)完成下面的證明:
證明:∵ BC是⊙A的直徑,
∴∠BPC=90°(____________)(填推理的依據).
∴OP⊥PC.
又∵OP是⊙O的半徑,
∴PC是⊙O的切線(____________)(填推理的依據).
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,Rt△ABC中, ,AC=BC,AB=4cm.動點D沿著A→C→B的方向從A點運動到B點.DE⊥AB,垂足為E.設AE長為cm,BD長為cm(當D與A重合時, =4;當D與B重合時=0).
小云根據學習函數的經驗,對函數隨自變量的變化而變化的規(guī)律進行了探究.
下面是小云的探究過程,請補充完整:
(1)通過取點、畫圖、測量,得到了與的幾組值,如下表:
補全上面表格,要求結果保留一位小數.則__________.
(2)在下面的網格中建立平面直角坐標系,描出以補全后的表中各對對應值為坐標的點,畫出該函數的圖象.
(3)結合畫出的函數圖象,解決問題:當DB=AE時,AE的長度約為 cm.
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標系xOy中,對于點P(x,y)和Q(x,y′),給出如下定義:
若,則稱點Q為點P的“可控變點”.
例如:點(1,2)的“可控變點”為點(1,2),點(﹣1,3)的“可控變點”為點(﹣1,﹣3).
(1)點(﹣5,﹣2)的“可控變點”坐標為 ;
(2)若點P在函數的圖象上,其“可控變點”Q的縱坐標y′是7,求“可控變點”Q的橫坐標;
(3)若點P在函數()的圖象上,其“可控變點”Q的縱坐標y′ 的取值范圍是,求實數a的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知直線y=ax+b與雙曲線y=(x>0)交于A(x1,y1),B(x2,y2)兩點,點A與點B不重合,直線AB與x軸交于點P(x0,0),與y軸交于點C.
(1)若A、B兩點坐標分別為(1,4),(4,y2),求點P的坐標;
(2)若b=y1+1,x0=6,且y1=2y2,求A,B兩點的坐標;
(3)若將(1)中的點A,B繞原點O順時針旋轉90°,A點對應的點為A′,B點的對應點為B′點,連接AB′,A′B′,動點M從A點出發(fā)沿線段AB′以每秒1個單位長度的速度向終點B′運動;動點N同時從B′點出發(fā)沿線段B′A′以每秒1個單位長度的速度向終點A′運動,當其中一個點停止運動時另一個點也隨之停止運動.設運動的時間為t秒,試探究:是否存在使△MNB′為等腰直角三角形的t值,若存在,求出t的值;若不存在,說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】對于平面直角坐標系xOy中的點P和⊙C,給出如下定義:若⊙C上存在兩個點A,B,使得∠APB=60°,則稱P為⊙C 的關聯點。已知點D(,),E(0,-2),F(,0)
(1)當⊙O的半徑為1時,
①在點D,E,F中,⊙O的關聯點是 ;
②過點F作直線交y軸正半軸于點G,使∠GFO=30°,若直線上的點P(m,n)是⊙O的關聯點,求m的取值范圍;
(2)若線段EF上的所有點都是某個圓的關聯點,求這個圓的半徑r的取值范圍。
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在△ABC中,BA=BC,以AB為直徑的⊙O分別交AC、BC于點D、E,BC的延長線于⊙O的切線AF交于點F.
(1)求證:∠ABC=2∠CAF;
(2)若AC=2,CE:EB=1:4,求CE的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,AB、CB、CD分別與⊙O切于E,F,G,且AB∥CD.連接OB、OC,延長CO交⊙O于點M,過點M作MN∥OB交CD于N.
(1)當OB=6cm,OC=8cm時,求⊙O的半徑;
(2)求證:MN=NG.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com