【題目】某商場經(jīng)營某種品牌的玩具,購進(jìn)時的單價是30元,根據(jù)市場調(diào)查:在一段時間內(nèi),銷售單價是40元時,銷售量是600件,而銷售單價每漲1元,就會少售出10件玩具.

1)不妨設(shè)該種品牌玩具的銷售單價為x元(x40),請你分別用x的代數(shù)式來表示銷售量y件和銷售該品牌玩具獲得利潤w元,并把結(jié)果填寫在表格中:

2)在(1)問條件下,若商場獲得了10000元銷售利潤,求該玩具銷售單價x應(yīng)定為多少元.

3)在(1)問條件下,若玩具廠規(guī)定該品牌玩具銷售單價不低于44元,且商場要完成不少于540件的銷售任務(wù),求商場銷售該品牌玩具獲得的最大利潤是多少?

【答案】1)見解析;(2)玩具銷售單價為50元或80元時,可獲得10000元銷售利潤;(3)商場銷售該品牌玩具獲得的最大利潤為8640元.

【解析】

1)由銷售單價每漲1元,就會少售出10件玩具得y=600﹣(x40×10=100010x,利潤=x30×(100010x )=10x2+1300x30000

2)令﹣10x2+1300x30000=10000,求出x的值即可;

3)首先求出x的取值范圍,然后把w=10x2+1300x30000轉(zhuǎn)化成y=10x652+12250,結(jié)合x的取值范圍,求出最大利潤.

解::(1)根據(jù)題意可得:y=600﹣(x40×10=100010x

利潤=x30×(100010x )=10x2+1300x30000;

2)﹣10x2+1300x30000=10000

解之得:x1=50x2=80

答:玩具銷售單價為50元或80元時,可獲得10000元銷售利潤.

3)根據(jù)題意得:

解之得:44≤x≤46,w=10x2+1300x30000=10x652+12250,∵a=100,對稱軸是直線x=65,∴當(dāng)44≤x≤46時,wx增大而增大,∴當(dāng)x=46時,W最大值=8640(元).

答:商場銷售該品牌玩具獲得的最大利潤為8640元.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一次數(shù)學(xué)興趣小組活動中,李燕和劉凱兩位同學(xué)設(shè)計了如圖所示的兩個轉(zhuǎn)盤做游戲(每個轉(zhuǎn)盤被分成面積相等的幾個扇形,并在每個扇形區(qū)域內(nèi)標(biāo)上數(shù)字).游戲規(guī)則如下:兩人分別同時轉(zhuǎn)動甲、乙轉(zhuǎn)盤,轉(zhuǎn)盤停止后,若指針?biāo)竻^(qū)域內(nèi)兩數(shù)和小于12,則李燕獲勝;若指針?biāo)竻^(qū)域內(nèi)兩數(shù)和等于12,則為平局;若指針?biāo)竻^(qū)域內(nèi)兩數(shù)和大于12,則劉凱獲勝(若指針停在等分線上,重轉(zhuǎn)一次,直到指針指向某一份內(nèi)為止).

(1)請用列表的方法表示出上述游戲中兩數(shù)和的所有可能的結(jié)果;

(2)分別求出李燕和劉凱獲勝的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在菱形ABCD中,AB2,∠BAD120°,點E,F分別是邊AB,BC邊上的動點,沿EF折疊BEF,使點B的對應(yīng)點B’始終落在邊CD上,則A、E兩點之間的最大距離為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=4,AD=3,矩形內(nèi)部有一動點P滿足SPAB=S矩形ABCD,則點PA、B兩點的距離之和PA+PB的最小值為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,A(0,4),B(3,4)P 為線段 OA 上一動點,過 O,PB 三點的圓交 x 軸正半軸于點 C,連結(jié) AB, PCBC,設(shè) OP=m.

(1)求證:當(dāng) P A 重合時,四邊形 POCB 是矩形.

(2)連結(jié) PB,求 tanBPC 的值.

(3)記該圓的圓心為 M,連結(jié) OMBM,當(dāng)四邊形 POMB 中有一組對邊平行時,求所有滿足條件的 m 的值.

(4)作點 O 關(guān)于 PC 的對稱點O ,在點 P 的整個運動過程中,當(dāng)點O 落在APB 的內(nèi)部 (含邊界)時,請寫出 m 的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形網(wǎng)格中,每個小正方形的邊長為1,格點三角形(頂點是網(wǎng)格線的交點的三角形)ABC的頂點AB的坐標(biāo)分別為(-4,5),(-2,1).

(1)寫出點C及點C關(guān)于y軸對稱的點C的坐標(biāo);

(2)請作出△ABC關(guān)于y軸對稱的△ABC′;

(3)求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD的頂點A和對稱中心均在反比例函數(shù)yk0,x0)上,若矩形ABCD的面積為8,則k的值為___

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有甲、乙兩種客車,2輛甲種客車與3輛乙種客車的總載客量為180人,1輛甲種客車與2輛乙種客車的總載客量為105人.

1)請問1輛甲種客車與1輛乙種客車的載客量分別為多少人?

2)某學(xué)校組織240名師生集體外出活動,擬租用甲、乙兩種客車共6輛,一次將全部師生送到指定地點.若每輛甲種客車的租金為400元,每輛乙種客車的租金為280元,請給出最節(jié)省費用的租車方案,并求出最低費用.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】投資1萬元圍一個矩形菜園(如圖),其中一邊靠墻,另外三邊選用不同材料建造.墻長24 m,平行于墻的邊的費用為200元/m,垂直于墻的邊的費用為150元/m,設(shè)平行于墻的邊長為x m.

(1)設(shè)垂直于墻的一邊長為y m,直接寫出y與x之間的函數(shù)關(guān)系式;

(2)若菜園面積為384 m2,求x的值;

(3)求菜園的最大面積.

查看答案和解析>>

同步練習(xí)冊答案