【題目】如圖,在矩形ABCD中,AB=4,AD=3,矩形內(nèi)部有一動(dòng)點(diǎn)P滿足SPAB=S矩形ABCD,則點(diǎn)PA、B兩點(diǎn)的距離之和PA+PB的最小值為______

【答案】4

【解析】首先由SPAB=S矩形ABCD,得出動(dòng)點(diǎn)P在與AB平行且與AB的距離是2的直線l上,作A關(guān)于直線l的對(duì)稱點(diǎn)E,連接AE,連接BE,則BE的長(zhǎng)就是所求的最短距離.然后在直角三角形ABE中,由勾股定理求得BE的值,即PA+PB的最小值.

設(shè)ABPAB邊上的高是h.

SPAB=S矩形ABCD,

ABh=ABAD,

h=AD=2,

∴動(dòng)點(diǎn)P在與AB平行且與AB的距離是2的直線l上,如圖,作A關(guān)于直線l的對(duì)稱點(diǎn)E,連接AE,連接BE,則BE的長(zhǎng)就是所求的最短距離.

RtABE中,∵AB=4,AE=2+2=4,

BE=,

PA+PB的最小值為4

故答案為:4

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:在RtABC中,∠ACB90°,AC1DAB的中點(diǎn),以CD為直徑的Q分別交BC、BA于點(diǎn)F、E,點(diǎn)E位于點(diǎn)D下方,連接EFCD于點(diǎn)G

1)如圖1,如果BC2,求DE的長(zhǎng);

2)如圖2,設(shè)BCx,y,求y關(guān)于x的函數(shù)關(guān)系式及其定義域;

3)如圖3,連接CE,如果CGCE,求BC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB為⊙O的直徑,點(diǎn)D,E是位于AB兩側(cè)的半圓AB上的動(dòng)點(diǎn),射線DC切⊙O于點(diǎn)D.連接DEAE,DEAB交于點(diǎn)P,F是射線DC上一動(dòng)點(diǎn),連接FP,FB,且∠AED45°

1)求證:CDAB;

2)填空:

①若DFAP,當(dāng)∠DAE_________時(shí),四邊形ADFP是菱形;

②若BFDF,當(dāng)∠DAE_________時(shí),四邊形BFDP是正方形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某小區(qū)2號(hào)樓對(duì)外銷售,已知2號(hào)樓某單元共33層,一樓為商鋪,只租不售,二樓以上價(jià)格如下:第16層售價(jià)為6000/2,從第16層起每上升一層,每平方米的售價(jià)提高30元,反之每下降一層,每平方米的售價(jià)降低10元,已知該單元每套的面積均為1002

1)請(qǐng)?jiān)谙卤碇,補(bǔ)充完整售價(jià)y(元/2)與樓層xx取正整數(shù))之間的函數(shù)關(guān)系式.

樓層x(層)

1

2≤x≤15

16

17≤x≤33

售價(jià)y(元/2

不售

   

6000

   

2)某客戶想購(gòu)買該單元第26層的一套樓房,若他一次性付清購(gòu)房款,可以參加如圖優(yōu)惠活動(dòng).請(qǐng)你幫助他分析哪種優(yōu)惠方案更合算.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,ABDC,ABAD,對(duì)角線AC,BD交于點(diǎn)O,AC平分BAD,過(guò)點(diǎn)CCEABAB的延長(zhǎng)線于點(diǎn)E,連接OE

(1)求證:四邊形ABCD是菱形;

(2)若AB,BD=2,求OE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】有一科技小組進(jìn)行了機(jī)器人行走性能試驗(yàn).在試驗(yàn)場(chǎng)地有A、B、C三點(diǎn)順次在同一筆直的賽道上,甲、乙兩機(jī)器人分別從A、B兩點(diǎn)同時(shí)同向出發(fā),經(jīng)過(guò)7min同時(shí)到達(dá)C點(diǎn),乙機(jī)器人始終以60m/min的速度行走,如圖是甲、乙兩機(jī)器人之間的距離ym)與他們的行走時(shí)間xmin)之間的函數(shù)圖象,請(qǐng)結(jié)合圖象,回答下列問(wèn)題:

1A、B兩點(diǎn)之間的距離是   m,甲機(jī)器人前2min的速度為   m/min;

2)若前3min甲機(jī)器人的速度不變,求線段EF所在直線的函數(shù)解析式;

3)直接寫出兩機(jī)器人出發(fā)多長(zhǎng)時(shí)間相距28m

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)經(jīng)營(yíng)某種品牌的玩具,購(gòu)進(jìn)時(shí)的單價(jià)是30元,根據(jù)市場(chǎng)調(diào)查:在一段時(shí)間內(nèi),銷售單價(jià)是40元時(shí),銷售量是600件,而銷售單價(jià)每漲1元,就會(huì)少售出10件玩具.

1)不妨設(shè)該種品牌玩具的銷售單價(jià)為x元(x40),請(qǐng)你分別用x的代數(shù)式來(lái)表示銷售量y件和銷售該品牌玩具獲得利潤(rùn)w元,并把結(jié)果填寫在表格中:

2)在(1)問(wèn)條件下,若商場(chǎng)獲得了10000元銷售利潤(rùn),求該玩具銷售單價(jià)x應(yīng)定為多少元.

3)在(1)問(wèn)條件下,若玩具廠規(guī)定該品牌玩具銷售單價(jià)不低于44元,且商場(chǎng)要完成不少于540件的銷售任務(wù),求商場(chǎng)銷售該品牌玩具獲得的最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩車分別從AB兩地同時(shí)出發(fā)相向而行,并以各自的速度勻速行駛,兩車在相遇之前同時(shí)改變了一次速度,并同時(shí)到達(dá)各自目的地,兩車距B地的路程ykm)與出發(fā)時(shí)間xh)之間的函數(shù)圖象如圖所示.

1)分別求甲、乙兩車改變速度后yx之間的函數(shù)關(guān)系式;

2)若m1,分別求甲、乙兩車改變速度之前的速度;

3)如果兩車改變速度時(shí)兩車相距90km,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司組織員工到附近的景點(diǎn)旅游,根據(jù)旅行社提供的收費(fèi)方案,繪制了如圖所示的圖象,圖中折線ABCD表示人均收費(fèi)y(元)與參加旅游的人數(shù)x(人)之間的函數(shù)關(guān)系.

(1)當(dāng)參加旅游的人數(shù)不超過(guò)10人時(shí),人均收費(fèi)為   元;

(2)如果該公司支付給旅行社3600元,那么參加這次旅游的人數(shù)是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案