【題目】(探究)如圖①,∠AFH和∠CHF的平分線交于點(diǎn)O,EG經(jīng)過點(diǎn)O且平行于FH,分別與AB、CD交于點(diǎn)E、G.
(1)若∠AFH=60°,∠CHF=50°,則∠EOF=_____度,∠FOH=_____度.
(2)若∠AFH+∠CHF=100°,求∠FOH的度數(shù).
(拓展)如圖②,∠AFH和∠CHI的平分線交于點(diǎn)O,EG經(jīng)過點(diǎn)O且平行于FH,分別與AB、CD交于點(diǎn)E、G.若∠AFH+∠CHF=α,直接寫出∠FOH的度數(shù).(用含a的代數(shù)式表示)
【答案】【探究】(1)30,125;(2)∠FOH=130°;【拓展】∠FOH=90°﹣α.
【解析】
(1)先根據(jù)角平分線的定義求出∠OFH,∠FHO 的度數(shù),再根據(jù)三角形的內(nèi)角和定理求出∠FOH的度數(shù);
(2)先根據(jù)角平分線的定義求出∠OFH+∠FHO 的度數(shù),再根據(jù)三角形的內(nèi)角和定理求出∠FOH的度數(shù);
(拓展) 先根據(jù)角平分線的定義求出∠OFH=∠AFH,∠OHI=∠CHI=(180°-∠CHF),再根據(jù)兩直線平行內(nèi)錯角相等得∠FOH=∠OHI﹣∠OFH即可。
(1)∵∠AFH=60°,OF平分∠AFH,
∴∠OFH=30°,
又∵EG∥FH,
∴∠EOF=∠OFH=30°(兩直線平行內(nèi)錯角相等);
∵∠CHF=50°,OH平分∠CHF,
∴∠FHO=25°,
∴△FOH中,∠FOH=180°﹣∠OFH﹣∠OHF=125°(三角形的內(nèi)角和定理);
故答案為:30,125;
(2)∵FO平分∠AFH,HO平分∠CHF,
∴∠OFH=∠AFH,∠OHF=∠CHF.
∵∠AFH+∠CHF=100°,
∴∠OFH+∠OHF=(∠AFH+∠CHF)=×100°=50°.
∵EG∥FH,
∴∠EOF=∠OFH,∠GOH=∠OHF(兩直線平行內(nèi)錯角相等).
∴∠EOF+∠GOH=∠OFH+∠OHF=50°.
∵∠EOF+∠GOH+∠FOH=180°(三角形的內(nèi)角和定理),
∴∠FOH=180°﹣(∠EOF+∠GOH )=180°﹣50°=130°.
拓展∵∠AFH和∠CHI的平分線交于點(diǎn)O,
∴∠OFH=∠AFH,∠OHI=∠CHI,
∴∠FOH=∠OHI﹣∠OFH
=(∠CHI﹣∠AFH)
=(180°﹣∠CHF﹣∠AFH)
=(180°﹣α)
=90°﹣α.
【探究】
(1)∵∠AFH=60°,OF平分∠AFH,
∴∠OFH=30°,
又∵EG∥FH,
∴∠EOF=∠OFH=30°;
∵∠CHF=50°,OH平分∠CHF,
∴∠FHO=25°,
∴△FOH中,∠FOH=180°﹣∠OFH﹣∠OHF=125°;
故答案為:30,125;
(2)∵FO平分∠AFH,HO平分∠CHF,
∴∠OFH=∠AFH,∠OHF=∠CHF.
∵∠AFH+∠CHF=100°,
∴∠OFH+∠OHF=(∠AFH+∠CHF)=×100°=50°.
∵EG∥FH,
∴∠EOF=∠OFH,∠GOH=∠OHF.
∴∠EOF+∠GOH=∠OFH+∠OHF=50°.
∵∠EOF+∠GOH+∠FOH=180°,
∴∠FOH=180°﹣(∠EOF+∠GOH )=180°﹣50°=130°.
拓展∵∠AFH和∠CHI的平分線交于點(diǎn)O,
∴∠OFH=∠AFH,∠OHI=∠CHI,
∴∠FOH=∠OHI﹣∠OFH
=(∠CHI﹣∠AFH)
=(180°﹣∠CHF﹣∠AFH)
=(180°﹣α)
=90°﹣α.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在同一直角坐標(biāo)系中,函數(shù)y=mx+m和y=﹣mx2+2x+2(m是常數(shù),且m≠0)的圖象可能是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一條筆直的公路上有A、B兩地,甲騎自行車從A地到B地;乙騎摩托車從B地到A地,到達(dá)A地后立即按原路返回.如圖是甲、乙兩人離B地的距離y(km)與行駛時間x(h)之間的函數(shù)圖象,根據(jù)圖象解答以下問題:
(1)直接寫出y甲,y乙與x之間的函數(shù)關(guān)系式(不寫過程);
(2)①求出點(diǎn)M的坐標(biāo),并解釋該點(diǎn)坐標(biāo)所表示的實(shí)際意義;
②根據(jù)圖象判斷,x取何值時,y乙>y甲.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在不透明的袋子中有黑棋子10枚和白棋子若干(它們除顏色外都相同),現(xiàn)隨機(jī)從中摸出10枚記下顏色后放回,這樣連續(xù)做了10次,記錄了如下的數(shù)據(jù):
次數(shù) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
黑棋數(shù) | 1 | 3 | 0 | 2 | 3 | 4 | 2 | 1 | 1 | 3 |
根據(jù)以上數(shù)據(jù),估算袋中的白棋子數(shù)量為( )
A.60枚
B.50枚
C.40枚
D.30枚
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】海上有一小島,為了測量小島兩端A、B的距離,測量人員設(shè)計了一種測量方法,如圖所示,已知B點(diǎn)是CD的中點(diǎn),E是BA延長線上的一點(diǎn),測得AE=8.3海里,DE=30海里,且DE⊥EC,cos∠D= .
(1)求小島兩端A、B的距離;
(2)過點(diǎn)C作CF⊥AB交AB的延長線于點(diǎn)F,求sin∠BCF的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,已知△ABC 中,其中 A(0,﹣2),B(2,﹣4),C(4,﹣1).
(1)畫出與△ABC 關(guān)于 y 軸對稱的圖形△A1B1C1;
(2)寫出△A1B1C1 各頂點(diǎn)坐標(biāo);
(3)求△ABC 的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)y=(m+1)x2-|m|+n+4.
(1)當(dāng)m,n為何值時,此函數(shù)是一次函數(shù)?
(2)當(dāng)m,n為何值時,此函數(shù)是正比例函數(shù)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AB=BC,△ABC≌△A1BC1,A1B交AC于點(diǎn)E,A1C1分別交AC、BC于D、F兩點(diǎn),觀察并猜想線段EA1與FC有怎樣的數(shù)量關(guān)系?并證明你的結(jié)論.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com