【題目】定義:P、Q分別是兩條線段a和b上任意一點,線段PQ長度的最小值叫做線段與線段的距離.已知O(0,0),A(4,0),B(m,n),C(m+4,n)是平面直角系中四點.
(1)根據(jù)上述定義,當m=2,n=3時,如圖1,線段BC與線段OA的距離是 ,當m=5,n=3時,如圖2,線段BC與線段OA的距離(即線段AB的長)為 .
(2)如圖3,若點B落在圓心為A,半徑為2的圓上,線段BC與線段OA的距離記為d,求d關于m的函數(shù)解析式.
(3)當m的值變化時,動線段BC與線段OA的距離始終為2,線段BC的中點為M.點D的坐標為(0,2),m≥0,n≥0,作MH⊥x軸,垂足為H,是否存在m的值,使以A、M、H為頂點的三角形與△AOD相似?若存在,求出m的值;若不存在,請說明理由.
【答案】(1)3,;(2)d=;(3)存在m的值使以A、M、H為頂點的三角形與△AOD相似,m的取值為:1、3或.
【解析】
(1)理解新定義,按照新定義的要求求出兩個距離值;
(2)如答圖2所示,當點B落在⊙A上時,m的取值范圍為2≤m≤6:
當4≤m≤6,顯然線段BC與線段OA的距離等于⊙A半徑,即d=2;
當2≤m<4時,作BN⊥x軸于點N,線段BC與線段OA的距離等于BN長;
(3)如答圖4所示,符合題意的相似三角形有三個,需要進行分類討論,分別利用點的坐標關系以及相似三角形比例線段關系求出m的值.
(1)當m=2,n=3時,
如題圖1,線段BC與線段OA的距離(即平行線BC與OA之間的距離)=3;
當m=5,n=3時,
B點坐標為(5,3),線段BC與線段OA的距離,即為線段AB的長,
如答圖1,過點B作BN⊥x軸于點N,則AN=1,BN=3,
在Rt△ABN中,由勾股定理得:AB===.
故答案為3,
(2)如答圖2所示,當點B落在⊙A上時,m的取值范圍為2≤m≤6:
當4≤m≤6,顯然線段BC與線段OA的距離等于⊙A半徑,即d=2;
當2≤m<4時,作BN⊥x軸于點N,線段BC與線段OA的距離等于BN長,
ON=m,AN=OA﹣ON=4﹣m,在Rt△ABN中,由勾股定理得:
∴d==.
(3)①依題意畫出圖形,點M的運動軌跡如答圖3中粗體實線所示:
由圖可見,封閉圖形由上下兩段長度為8的線段,以及左右兩側(cè)半徑為2的半圓所組成,
其周長為:2×8+2×π×2=16+4π,
∴點M隨線段BC運動所圍成的封閉圖形的周長為:16+4π.
②結論:存在.
∵m≥0,n≥0,∴點M位于第一象限.
∵A(4,0),D(0,2),∴OA=2OD.
如答圖4所示,相似三角形有三種情形:
(I)△AM1H1,此時點M縱坐標為2,點H在A點左側(cè).
如圖,OH1=m+2,M1H1=2,AH1=OA﹣OH1=2﹣m,
由相似關系可知,M1H1=2AH1,即2=2(2﹣m),
∴m=1;
(II)△AM2H2,此時點M縱坐標為2,點H在A點右側(cè).
如圖,OH2=m+2,M2H2=2,AH2=OH2﹣OA=m﹣2,
由相似關系可知,M2H2=2AH2,即2=2(m﹣2),
∴m=3;
(III)△AM3H3,此時點B落在⊙A上.
如圖,OH3=m+2,AH3=OH3﹣OA=m﹣2,
過點B作BN⊥x軸于點N,則BN=M3H3=n,AN=m﹣4,
由相似關系可知,AH3=2M3H3,即m﹣2=2n (1)
在Rt△ABN中,由勾股定理得:22=(m﹣4)2+n2 (2)
由(1)、(2)式解得:m1=,m2=2,
當m=2時,點M與點A橫坐標相同,點H與點A重合,故舍去,
∴m=.
綜上所述,存在m的值使以A、M、H為頂點的三角形與△AOD相似,m的取值為:1、3或.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD的對角線AC,BD相交于點O,將BD向兩個方向延長,分別至點E和點F,且使BE=DF.
(1)求證:四邊形AECF是菱形;
(2)若AC=4,BE=1,求菱形AECF的邊長和面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,如圖,等腰Rt△ABC,等腰Rt△ADE,AB⊥AC,AD⊥AE,AB=AC,AD=AE,CD交AE、BE分別于點M、F
(1)求證:△DAC≌△EAB;
(2)若∠AEF=15°,EF=4,求DE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】作圖題:
(1)如圖①,已知:.求作:射線,使平分.(要求:尺規(guī)作圖,不寫作法,但需保留作圖痕跡) .
(2)題(1)中作圖的依據(jù)是全等三角形判定方法中的__________.
(3)在圖②中作出,使它與關于軸對稱.
(4)在圖②中的軸上找到一點,使的周長最小.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC內(nèi)接于⊙O,A B為⊙O的直徑,BD⊥AB,交AC的延長線于點D.
(1)E為BD的中點,連結CE,求證:CE是⊙O的切線.
(2)若AC=3,CD=1,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A、B、C在同一直線上,△ABD,△BCE都是等邊三角形.
(1)求證:AE=CD;
(2)若M,N分別是AE,CD的中點,試判斷△BMN的形狀,并證明你的結論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,K是正方形ABCD內(nèi)一點,以AK為一邊作正方形AKLM,使L,M,D在AK的同旁,連接BK和DM,試用旋轉(zhuǎn)的思想說明線段BK與DM的關系.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,把矩形COAB繞點C順時針旋轉(zhuǎn)α角,得到矩形CFED.設FC與AB交于點H,且A(0,4),C(8,0).
(1)當α=60°時,△CBD的形狀是______;
(2)設AH=m
①連接HD,當△CHD的面積等于10時,求m的值;
②當0°<α<90°旋轉(zhuǎn)過程中,連接OH,當△OHC為等腰三角形時,請直接寫出m的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在邊長為8的正方形ABCD中,點O為AD上一動點(4<OA<8),以O為圓心,OA的長為半徑的圓交邊CD于點E,連接OE、AE,過點E作⊙O的切線交邊BC于F.
(1)求證:△ODE∽△ECF;
(2)在點O的運動過程中,設DE= :
①求的最大值,并求此時⊙O的半徑長;
②判斷△CEF的周長是否為定值,若是,求出△CEF的周長;否則,請說明理由?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com