【題目】如圖1,四邊形ABCD是邊長為的正方形,矩形AEFG中AE=4,∠AFE=30°。將矩形AEFG繞點A順時針旋轉(zhuǎn)15°得到矩形AMNH(如圖2),此時BD與MN相交于點O.

(1)求∠DOM的度數(shù);

(2)圖2中,求D、N兩點間的距離;

(3)若將矩形AMNH繞點A再順時針旋轉(zhuǎn)15°得到矩形APQR,此時點B在矩形APQR的內(nèi)部、外部還是邊上?并說明理由.

【答案】1120°;(2(3)點B在矩形APQR的內(nèi)部.

【解析】試題分析:1)由旋轉(zhuǎn)的性質(zhì),可得∠BAM=15°,即可得∠OKB=AOM=75°,又由正方形的性質(zhì),可得∠ABD=45°,然后利用外角的性質(zhì),即可求得∠DOM的度數(shù);

2)首先連接AM,交BDI,連接AN,由特殊角的三角函數(shù)值,求得∠HAN=30°,又由旋轉(zhuǎn)的性質(zhì),即可求得∠DAN=45°,即可證得A,C,N共線,然后由股定理求得答案;

3)在RtARK中,利用三角函數(shù)即可求得AK的值,與AB比較大小,即可確定B的位置.

試題解析:(1)依題意得:∠BAM=15°,

MNAB交于K,

∵四邊形AMNH是矩形,

∴∠M=90°

∴∠AKM=90°-BAM=75°.

∴∠BKO=AKM=75°.

∵四邊形ABCD是正方形,

∴∠ABD=45°.

∴∠DOM=BKO+ABD=75°+45°=120°.

2)連接AN,交BDI,連接DN

AE=4AFE=30°,AEF=90°,

AN=AF=2AE=8.

由旋轉(zhuǎn)得:∠DAH=15°,

∴∠DAN=45°.

∵正方形ABCD中,∠DAC=45°.

A、C、N共線.

∵正方形ABCD中,BDACAD=AB=,

DI=AI=.

NI=AN-AI=8-3=5.

RtDIN中, .

3)點B在矩形APQR的內(nèi)部,理由如下:

如圖,

依題意得:∠BAP=15°+15°=30°

∵∠P=90°,

AK=2PK.

AP=4,AP2+PK2=AK2

解得: ,

AB=,

∴點B在矩形APQR的內(nèi)部.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形紙片中,,點分別在上,把沿翻折,的落點是對角線上的點,則四邊形的面積是____________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我們約定,在平面直角坐標系中,經(jīng)過象限內(nèi)某點且平行于坐標軸或平行于兩坐標軸夾角平分線的直線,叫該點的“參照線”.例如,點的參照線有:,,(如圖1).

如圖2,正方形在平面直角坐標系中,點在第一象限,點,分別在軸和軸上,點在正方形內(nèi)部.

1)直接寫出點的所有參照線: ;

2)若,點在線段的垂直平分線上,且點有一條參照線是,則點的坐標是_______________;

3)在(2)的條件下,點邊上任意一點(點不與點,重合),連接,將沿著折疊,點的對應點記為.當點在點的平行于坐標軸的參照線上時,寫出相應的折痕所在直線的解析式:

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校積極推進“陽光體育”工程,本學期在九年級11個班中開展籃球單循環(huán)比賽(每個班與其它班分別進行一場比賽,每班需進行10場比賽).比賽規(guī)則規(guī)定:每場比賽都要分出勝負,勝一場得3分,負一場得﹣1分.

1)如果某班在所有的比賽中只得14分,那么該班勝負場數(shù)分別是多少?

2)假設比賽結(jié)束后,甲班得分是乙班的3倍,甲班獲勝的場數(shù)不超過5場,且甲班獲勝的場數(shù)多于乙班,請你求出甲班、乙班各勝了幾場.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)已知(a+b2=7,(a-b2=4,求a2+b2ab的值.

2)分解因式:

x2-8xy+16y2

②(x+y+12-x-y+12

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ACBECD都是等腰直角三角形,CA=CBCD=CE,ACB的頂點A在△ECD的斜邊DE上,連接BD

1)求證:BD=AE;

2)若AE=5cm,AD=7cm,求AC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形中,,的中點,,于點

1)求證:四邊形是菱形.

2)若,,求的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,ABC中,ADBC邊上的中線,則有SABDSACD,許多面積問題可以轉(zhuǎn)化為這個基本模型解答.如圖②,已知ABC的面積為1,把ABC各邊均順次延長一倍,連結(jié)所得端點,得到A1B1C1,即將ABC向外擴展了一次,則擴展一次后的A1B1C1的面積是_____,如圖③,將ABC向外擴展了兩次得到A2B2C2,……,若將ABC向外擴展了n次得到AnBnn,則擴展n次后得到的AnBnn面積是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某縣為落實“精準扶貧惠民政策”,計劃將某村的居民自來水管道進行改造.該工程若由甲隊單獨施工恰好在規(guī)定時間內(nèi)完成;若乙隊單獨施工,則完成工程所需天數(shù)是規(guī)定天數(shù)的15倍.如果由甲、乙隊先合作施工15天,那么余下的工程由甲隊單獨完成還需5天.

(1)這項工程的規(guī)定時間是多少天?

(2)為了縮短工期以減少對居民用水的影響,工程指揮部最終決定該工程由甲、乙兩隊合作完成.則甲、乙兩隊合作完成該工程需要多少天?

查看答案和解析>>

同步練習冊答案