【題目】如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)A的坐標(biāo)是(0,2),點(diǎn)Cx軸上的一個(gè)動(dòng)點(diǎn).當(dāng)點(diǎn)Cx軸上移動(dòng)時(shí),始終保持△ACP是等邊三角形(點(diǎn)A、C、P按逆時(shí)針方向排列);當(dāng)點(diǎn)C移動(dòng)到點(diǎn)O時(shí),得到等邊三角形AOB(此時(shí)點(diǎn)P與點(diǎn)B重合).

初步探究

(1)寫出點(diǎn)B的坐標(biāo)   ;

(2)點(diǎn)Cx軸上移動(dòng)過程中,當(dāng)?shù)冗吶切?/span>ACP的頂點(diǎn)P在第三象限時(shí),連接BP,求證:△AOC≌△ABP.

深入探究

(3)當(dāng)點(diǎn)Cx軸上移動(dòng)時(shí),點(diǎn)P也隨之運(yùn)動(dòng).探究點(diǎn)P在怎樣的圖形上運(yùn)動(dòng),請直接寫出結(jié)論;并求出這個(gè)圖形所對應(yīng)的函數(shù)表達(dá)式.

拓展應(yīng)用

(4)點(diǎn)Cx軸上移動(dòng)過程中,當(dāng)△POB為等腰三角形時(shí),直接寫出此時(shí)點(diǎn)C的坐標(biāo).

【答案】(1)(,1);(2)證明見解析;(3)點(diǎn)P在過點(diǎn)B且與AB垂直的直線上,點(diǎn)P所在直線的函數(shù)表達(dá)式為y=x﹣2;(4)(﹣2,0)或(﹣,0)或(﹣2,0)或(2,0).

【解析】

(1)如圖1中,作BHOAH.利用等邊三角形的性質(zhì),解直角三角形求出BHOH即可;

(2)根據(jù)SAS即可判斷;

(3)點(diǎn)P在過點(diǎn)B且與AB垂直的直線上.當(dāng)點(diǎn)Py軸上時(shí),得P(0,﹣2).由B,1).設(shè)點(diǎn)P所在直線的函數(shù)表達(dá)式為:y=kx+bk0).把點(diǎn)B、P的坐標(biāo)分別代入即可解決問題;

(4)分四種情形分別求解即可解決問題;

(1)如圖1中,作BHOAH.

∵△AOB是等邊三角形,OA=OB=AB=2,BOH=60°

RtOBH中,BH=OBsin60°=,OH=AH=1,

B(,1).

(2)如圖2

∵△AOB與△ACP都是等邊三角形,

AO=AB,AC=AP,CAP=OAB=60°,

∴∠CAP+PAO=OAB+PAO,

即∠CAO=PAB,

在△AOC與△ABP中,

∴△AOC≌△ABP(SAS).

(3)如圖2中,∵△AOC≌△ABP(SAS).

∴∠ABP=AOC=90°,

PBAB,

∴點(diǎn)P在過點(diǎn)B且與AB垂直的直線上.

當(dāng)點(diǎn)Py軸上時(shí),得P(0,﹣2).

B(,1).

設(shè)點(diǎn)P所在直線的函數(shù)表達(dá)式為:y=kx+b(k≠0).把點(diǎn)B、P的坐標(biāo)分別代入,得

所以點(diǎn)P所在直線的函數(shù)表達(dá)式為:y=x﹣2.

(4)如圖3中,

①當(dāng)OB=BP1=2時(shí),OC1=BP1=2,此時(shí)C1(2,0).

②當(dāng)P2O=P2B時(shí),OC2=BP2=,此時(shí)C2(﹣,0).

③當(dāng)OB=BP3=2時(shí),OC3=2,此時(shí)C3(﹣2,0).

④當(dāng)OB=OP4時(shí),OC4=BP4=2,此時(shí)C4(﹣2,0),

故答案為(﹣2,0)或(﹣,0)或(﹣2,0)或(2,0).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知多項(xiàng)式2x2+x3+x﹣5x4

(1)請指出該多項(xiàng)式是幾次幾項(xiàng)式,并寫出它的二次項(xiàng)、一次項(xiàng)和常數(shù)項(xiàng);

(2)按要求把這個(gè)多項(xiàng)式重新排列:①按x的降冪排列;②按x的升冪排列.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰△ABC中,CA=CB,AD是腰BC邊上的高,△ACD的內(nèi)切圓⊙E分別與邊AD、BC相切于點(diǎn)F、G,連AE、BE.
(1)求證:AF=BG;
(2)過E點(diǎn)作EH⊥AB于H,試探索線段EH與線段AB的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在數(shù)軸上,點(diǎn)A表示-5,點(diǎn)B表示10.動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿?cái)?shù)軸正方向以每秒1個(gè)單位的速度勻速運(yùn)動(dòng);同時(shí),動(dòng)點(diǎn)Q從點(diǎn)B出發(fā),沿?cái)?shù)軸負(fù)方向以每秒2個(gè)單位的速度勻速運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t.

(1)當(dāng)t 秒時(shí),P,Q兩點(diǎn)相遇,求出相遇點(diǎn)所對應(yīng)的數(shù);

(2)當(dāng)t為何值時(shí),P,Q兩點(diǎn)的距離為3個(gè)單位長度,并求出此時(shí)點(diǎn)P對應(yīng)的數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為發(fā)展校園足球運(yùn)動(dòng),某縣城區(qū)四校決定聯(lián)合購買一批足球運(yùn)動(dòng)裝備,市場調(diào)查發(fā)現(xiàn):甲、乙兩商場以同樣的價(jià)格出售同種品牌的足球隊(duì)服和足球,已知每套隊(duì)服比每個(gè)足球多50元,兩套隊(duì)服與三個(gè)足球的費(fèi)用相等,經(jīng)洽談,甲商場優(yōu)惠方案是:每購買十套隊(duì)服,送一個(gè)足球;乙商場優(yōu)惠方案是:若購買隊(duì)服超過80套,則購買足球打八折.

(1)求每套隊(duì)服和每個(gè)足球的價(jià)格是多少?

(2)若城區(qū)四校聯(lián)合購買100套隊(duì)服和a個(gè)足球,請用含a的式子分別表示出到甲商場和乙商場購買裝備所花的費(fèi)用;

(3)假如你是本次購買任務(wù)的負(fù)責(zé)人,你認(rèn)為到哪家商場購買比較合算?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:

(1)(10xy3)·2xy4z

(2)(4x)(2x22x1);

(3)0.4x2y·(2x)3·xy3;

(4)3a2b(a2ab)2a2(b3)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩人相約周末登花果山,甲、乙兩人距地面的高度y(米)與登山時(shí)間x(分)之間的函數(shù)圖象如圖所示,根據(jù)圖象所提供的信息解答下列問題:

(1)甲登山上升的速度是每分鐘   米,乙在A地時(shí)距地面的高度b   米.

(2)若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,請求出乙登山全程中,距地面的高度y(米)與登山時(shí)間x(分)之間的函數(shù)關(guān)系式.

(3)登山多長時(shí)間時(shí),甲、乙兩人距地面的高度差為50米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】A,B兩點(diǎn)在數(shù)軸上的位置如圖所示,O為原點(diǎn),現(xiàn)A,B兩點(diǎn)分別以1個(gè)單位長度/秒的速度同時(shí)向左運(yùn)動(dòng)。

(1)幾秒后,原點(diǎn)恰好在A,B兩點(diǎn)正中間?

(2)幾秒后,恰好有OA:OB=1:2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,學(xué)校大門出口處有一自動(dòng)感應(yīng)欄桿,點(diǎn)A是欄桿轉(zhuǎn)動(dòng)的支點(diǎn),當(dāng)車輛經(jīng)過時(shí),欄桿AE會(huì)自動(dòng)升起,某天早上,欄桿發(fā)生故障,在某個(gè)位置突然卡住,這時(shí)測得欄桿升起的角度∠BAE=127°,已知AB⊥BC,支架AB高1.2米,大門BC打開的寬度為2米,以下哪輛車可以通過?( 。
(欄桿寬度,汽車反光鏡忽略不計(jì))
(參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75.車輛尺寸:長×寬×高)

A.寶馬Z4(4200mm×1800mm×1360mm)
B.奇瑞QQ(4000mm×1600mm×1520mm)
C.大眾朗逸(4600mm×1700mm×1400mm)
D.奧迪A4(4700mm×1800mm×1400mm)

查看答案和解析>>

同步練習(xí)冊答案