【題目】為發(fā)展校園足球運動,某縣城區(qū)四校決定聯(lián)合購買一批足球運動裝備,市場調(diào)查發(fā)現(xiàn):甲、乙兩商場以同樣的價格出售同種品牌的足球隊服和足球,已知每套隊服比每個足球多50元,兩套隊服與三個足球的費用相等,經(jīng)洽談,甲商場優(yōu)惠方案是:每購買十套隊服,送一個足球;乙商場優(yōu)惠方案是:若購買隊服超過80套,則購買足球打八折.

(1)求每套隊服和每個足球的價格是多少?

(2)若城區(qū)四校聯(lián)合購買100套隊服和a個足球,請用含a的式子分別表示出到甲商場和乙商場購買裝備所花的費用;

(3)假如你是本次購買任務(wù)的負責(zé)人,你認為到哪家商場購買比較合算?

【答案】(1)每套隊服150元,每個足球100元;(2)100a+14000(元),80a+15000(元);(3)購買的足球數(shù)多于50個時,則到乙商場購買合算;

購買的足球數(shù)少于50個時,則到甲商場購買合算

【解析】

試題分析:(1)設(shè)每個足球的定價是x元,則每套隊服是(x+50)元,根據(jù)兩套隊服與三個足球的費用相等列出方程,解方程即可;

(2)根據(jù)甲、乙兩商場的優(yōu)惠方案即可求解;

(3)先求出到兩家商場購買一樣合算時足球的個數(shù),再根據(jù)題意即可求解.

解:(1)設(shè)每個足球的定價是x元,則每套隊服是(x+50)元,根據(jù)題意得

2(x+50)=3x,

解得x=100,

x+50=150.

答:每套隊服150元,每個足球100元;

(2)到甲商場購買所花的費用為:150×100+100(a﹣)=100a+14000(元),

到乙商場購買所花的費用為:150×100+0.8×100a=80a+15000(元);

(3)當在兩家商場購買一樣合算時,100a+14000=80a+15000,

解得a=50.

所以購買的足球數(shù)等于50個時,則在兩家商場購買一樣合算;

購買的足球數(shù)多于50個時,則到乙商場購買合算;

購買的足球數(shù)少于50個時,則到甲商場購買合算

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,OA⊥OB,等腰直角三角形CDE的腰CD在OB上,∠ECD=45°,將三角形CDE繞點C逆時針旋轉(zhuǎn)75°,點E的對應(yīng)點N恰好落在OA上,則 的值為(  )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù) 與直線 交于點P(1,b).
(1)求ab的值;
(2)寫出二次函數(shù)的關(guān)系式,并指出x取何值時,該函數(shù)的yx的增大而減。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC的中線AE,BD交于點G,過點D作DM∥BC交AE于點M,則△AMD,△DMG和△BEG的面積之比為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某地生產(chǎn)一種綠色蔬菜,若在市場上直接銷售,每噸利潤為1 000元;經(jīng)粗加工后銷售,每噸利潤可達4 500元;經(jīng)精加工后銷售,每噸利潤漲至7 500元.

當?shù)匾患沂卟斯臼斋@這種蔬菜140噸,該公司加工廠的生產(chǎn)能力是:如果對蔬菜進行粗加工,每天可加工16噸;如果進行精加工,每天可加工6噸,但兩種加工方式不能同時進行,受季節(jié)等條件限制,公司必須在15天內(nèi)將這批蔬菜全部銷售或加工完畢,為此公司制訂了三種方案:

方案一:將蔬菜全部進行粗加工;

方案二:盡可能多的對蔬菜進行精加工,沒有來得及進行加工的蔬菜,在市場上直接銷售;

方案三:將部分蔬菜進行精加工,其余蔬菜進行粗加工,并恰好15天完成.

你認為選擇哪種方案獲利最多?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下面是馬小哈同學(xué)做的一道題

解方程

:①去分母 4(2x﹣1)=1﹣3(x+2)

去括號, 8x﹣4=1﹣3x﹣6

移項,8x+3x=1﹣6+4

合并同類項, 11x=﹣1

系數(shù)化為1,

(1)上面的解題過程中最早出現(xiàn)錯誤的步驟是(填代號) ;

(2)請在本題右邊正確的解方程

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線的頂點在第四象限,頂點到x軸的距離為3,拋物線與x軸交于原點O(0,0)及點A,且OA=4.

(1)求該拋物線的解析式;
(2)若線段OA繞點O順時針旋轉(zhuǎn)45°到OA′,試判斷點A′是否在該拋物線上,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=kx+6與x軸、y軸分別交于點E、F,點E的坐標為(﹣8,0),點A的坐標為(﹣6,0).

(1)求k的值;

(2)若點P(x,y)是第二象限內(nèi)的直線上的一個動點,在點P的運動過程中,試寫出OPA的面積S與x的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;

(3)探究:在(2)的情況下,當點P運動到什么位置時,OPA的面積為,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】低碳生活備受關(guān)注.小明為了了解人們到某超市購物時使用購物袋的情況,利用星期日到該超市對部分購物者進行調(diào)查,并把調(diào)查結(jié)果繪制成兩幅不完整的統(tǒng)計圖.假設(shè)當天每人每次購物時都只用一個環(huán)保購物袋(可降解)或塑料購物袋(不可降解).

根據(jù)以上信息,回答下列問題:

1)小明這次調(diào)查到的購物人數(shù)是    人次;

2)補全兩幅統(tǒng)計圖;

3)若當天到該超市購物者共有2000人次,請你估計使用塑料購物袋有      人次;環(huán)保購物袋有 人次;扇形C的圓心角是

查看答案和解析>>

同步練習(xí)冊答案