【題目】如圖,在四邊形ABCD中,∠BAD100°,∠B=∠D90°,在BC、CD上分別找一個(gè)點(diǎn)MN,使AMN的周長(zhǎng)最小,則∠AMN+ANM的度數(shù)為( 。

A.130°B.120°C.160°D.100°

【答案】C

【解析】

要使AMN的周長(zhǎng)最小,即利用點(diǎn)的對(duì)稱,使三角形的三邊在同一直線上,作出A關(guān)于BCCD的對(duì)稱點(diǎn)AA,即可得出∠AAM+A″′80°,進(jìn)而得出∠AMN+ANM2(∠AAM+A),即可得出答案.

解:作A關(guān)于BCCD的對(duì)稱點(diǎn)A,A,連接AA,交BCM,交CDN,則AA即為AMN的周長(zhǎng)最小值.

∵∠DAB100°,

∴∠AAM+A180°﹣∠BAD180°100°80°

∵∠MAA=∠MAA,∠NAD=∠A,且∠MAA+MAA=∠AMN,∠NAD+A=∠ANM,

∴∠AMN+ANM=∠MAA+MAA′+NAD+A2(∠AAM+A)=2×80°160°

故選:C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖:在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),四邊形OABC矩形,點(diǎn)A、C的坐標(biāo)分別為、,點(diǎn)DOA的中點(diǎn),點(diǎn)PBC邊上運(yùn)動(dòng),當(dāng)是等腰三角形時(shí),點(diǎn)Р的坐標(biāo)為_______________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知扇形中,,弦,點(diǎn)是弧上任意一點(diǎn)(與端點(diǎn)、不重合),于點(diǎn),以點(diǎn)為圓心、長(zhǎng)為半徑作,分別過點(diǎn)、的切線,兩切線相交于點(diǎn)

求弧的長(zhǎng);

試判斷的大小是否隨點(diǎn)的運(yùn)動(dòng)而改變?若不變,請(qǐng)求出的大;若改變,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC是邊長(zhǎng)為5的等邊三角形,點(diǎn)D,E分別在BC,AC上,DEAB,過點(diǎn)EEFDE,交BC的的延長(zhǎng)線于點(diǎn)F,若BD2,則DF等于(  )

A.7B.6C.5D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,ABAC14DE是線段AB的垂直平分線.

1)若△EBC的周長(zhǎng)是24,求BC的長(zhǎng);

2)若∠Ax°,求∠EBC的度數(shù)(用含x的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列短文,回答有關(guān)問題:

在實(shí)數(shù)這章中,遇到過、;這樣的式子,我們把這樣的式子叫做二次根式,根號(hào)下的數(shù)叫做被開方數(shù).如果一個(gè)二次根式的被開方數(shù)中有的因數(shù)能開的盡方,可以利用將這些因數(shù)開出來,從而將二次根式化簡(jiǎn).當(dāng)一個(gè)二次根式的被開方數(shù)中不含開得盡方的因數(shù)或者被開方數(shù)中不含有分?jǐn)?shù)時(shí),這樣的二次根式叫做最簡(jiǎn)二次根式,例如,化成最簡(jiǎn)二次根式是,化成最簡(jiǎn)二次根式是.幾個(gè)二次根式化成最簡(jiǎn)二次根式以后,如果被開方數(shù)相同,這幾個(gè)二次根式叫做同類二次根式,如上面的例子就是同類二次根式.

請(qǐng)判斷下列各式中,哪些是同類二次根式?;

二次根式中的同類二次根式可以像整式中的同類項(xiàng)一樣合并,請(qǐng)計(jì)算:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,ABAC,AC的垂直平分線DEAC于點(diǎn)D,交BC于點(diǎn)E,且∠BAE90°,若DE1,則BE=( 。

A.4B.3C.2D.無法確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在下列條件中:A+B=∠CA:∠B:∠C156,A90°﹣∠BA=∠BC中,能確定△ABC是直角三角形的條件有(  )

A. 1個(gè)B. 2個(gè)C. 3個(gè)D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】李大媽加盟了紅紅全國燒烤連鎖店,該公司的宗旨是薄利多銷,經(jīng)市場(chǎng)調(diào)查發(fā)現(xiàn),當(dāng)羊肉串的單價(jià)定為元時(shí),每天能賣出串,在此基礎(chǔ)上,每加價(jià)元李大媽每天就會(huì)少賣出串,考慮了所有因素后李大媽的每串羊肉串的成本價(jià)為元,若李大媽每天銷售這種羊肉串想獲得利潤(rùn)是元,那么請(qǐng)問這種羊肉串應(yīng)怎樣定價(jià)?

查看答案和解析>>

同步練習(xí)冊(cè)答案