【題目】如圖,等腰RtABCAB6,點(diǎn)E是斜邊AB上的一點(diǎn)(端點(diǎn)A、B除外),將△CAEC逆時(shí)針旋轉(zhuǎn)90°至△CBF,連接EF,且EF的中點(diǎn)為O,連OB、OC,設(shè)AEx,

1)求證:OBOC

2)用x表示△BEF的面積SBEF,并求SBEF的最大值;

3)用x表示四邊形BECF的周長(zhǎng)C,并求C的最小值.

【答案】1)詳見解析;(2;(312

【解析】

1)由旋轉(zhuǎn)的性質(zhì)和等腰直角三角形的性質(zhì)可得∠ECF90°,∠EBF90°,然后再由直角三角形的性質(zhì)可得結(jié)論;

2)由三角形面積公式可求得SBEFx的關(guān)系式,然后根據(jù)二次函數(shù)的性質(zhì)求解即可;

3)易得四邊形BECF的周長(zhǎng)C6+2CE,于是當(dāng)CEAB時(shí),CE的值最小,亦即四邊形BECF的周長(zhǎng)C最小,然后由等腰直角三角形的性質(zhì)求解即可.

解:(1)證明:∵RtABC是等腰直角三角形,∴ACBC,∠ACB90°,∴∠CAB=∠CBA45°

∵將△CAEC逆時(shí)針旋轉(zhuǎn)90°至△CBF,

∴∠A=∠CBF45°,AEBF,CECF,∠ECF90°,

∴∠EBF=∠ABC+CBF90°,

EF的中點(diǎn)為O,∴COEFBOEF,

BOCO;

2)∵AEBFx,AB6,∴BE6x,

SBEFBE×BF=﹣x2+3x=﹣x32+,

∴當(dāng)x3時(shí),SBEF的最大值為;

3)∵四邊形BECF的周長(zhǎng)CBE+BF+CE+CFBE+AE+2CE6+2CE

∴當(dāng)CE的值最小時(shí),四邊形BECF的周長(zhǎng)C有最小值,

∴當(dāng)CEAB時(shí),CE的值最小,此時(shí)CEAB3,

∴四邊形BECF的周長(zhǎng)C最小值=6+2×312

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在中,,,垂足為點(diǎn)外角的平分線,,垂足為點(diǎn),連接于點(diǎn)

求證:四邊形為矩形;

當(dāng)滿足什么條件時(shí),四邊形是一個(gè)正方形?并給出證明.

的條件下,若,求正方形周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某居民樓的前面有一圍墻,在點(diǎn)處測(cè)得樓頂的仰角為,在處測(cè)得樓頂的仰角為,且的高度為2米,之間的距離為20米(,在同一條直線上).

1)求居民樓的高度.

2)請(qǐng)你求出兩點(diǎn)之間的距離.(參考數(shù)據(jù):,,,結(jié)果保留整數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某校數(shù)學(xué)興趣小組利用自制的直角三角形硬紙板DEF來(lái)測(cè)量操場(chǎng)旗桿AB的高度,他們通過調(diào)整測(cè)量位置,使斜邊DF與地面保持平行,并使邊DE與旗桿頂點(diǎn)A在同一直線上,已知DE=0.5m,EF=0.25m,目測(cè)點(diǎn)D到地面的距離DG=1.5m,到旗桿的水平距離DC=20m,則旗桿的高度為( )

A. mB. m

C.11.5mD.10m

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將一個(gè)8cm×16cm智屏手機(jī)抽象成一個(gè)矩形ABCD,其中AB8cmAD16cm,現(xiàn)將正在豎屏看視頻的這個(gè)手機(jī)圍繞它的中心R順時(shí)針旋轉(zhuǎn)90°后改為橫屏看視頻,其中,MCD的中點(diǎn),則圖中等于45°的角有_____個(gè).(按圖中所標(biāo)字母寫出符合條件的角)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知的周長(zhǎng)等于 ,則它的內(nèi)接正六邊形ABCDEF的面積是(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線yax2x+cx軸相交于點(diǎn)A(﹣2,0)、B4,0),與y軸相交于點(diǎn)C,連接AC,BC,以線段BC為直徑作⊙M,過點(diǎn)C作直線CEAB,與拋物線和⊙M分別交于點(diǎn)DE,點(diǎn)PBC下方的拋物線上運(yùn)動(dòng).

1)求該拋物線的解析式;

2)當(dāng)△PDE是以DE為底邊的等腰三角形時(shí),求點(diǎn)P的坐標(biāo);

3)當(dāng)四邊形ACPB的面積最大時(shí),求點(diǎn)P的坐標(biāo)并求出最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖(1)是一種簡(jiǎn)易臺(tái)燈,在其結(jié)構(gòu)圖(2)中燈座為ABCBC伸出部分不計(jì)),AC、D在同一直線上.量得∠ACB=90°,∠A=60°,AB=16cm,∠ADE=135°,燈桿CD長(zhǎng)為40cm,燈管DE長(zhǎng)為15cm.(參考數(shù)據(jù):sin15°=0.26cos15°=0.97,tan15°=0.27,sin30°=0.5cos30°=0.87,tan30°=0.58.)

1)求DE與水平桌面(AB所在直線)所成的角;

2)求臺(tái)燈的高(點(diǎn)E到桌面的距離,結(jié)果精確到0.1cm).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】方格紙中的每個(gè)小方格都是邊長(zhǎng)為1個(gè)單位的正方形,在建立平面直角坐標(biāo)系后,ABC的頂點(diǎn)均在格點(diǎn)上,點(diǎn)C的坐標(biāo)為(4,﹣1).

(1)作出ABC關(guān)于y軸對(duì)稱的,并寫出的坐標(biāo);

(2)作出ABC繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°后得到的,并求出所經(jīng)過的路徑長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案