【題目】在每個小正方形的邊長為1的網(wǎng)格中,等腰直角三角形ACB與ECD的頂點都在網(wǎng)格點上,點N、M分別為線段AB、DE上的動點,且BN=EM. (Ⅰ)如圖①,當BN= 時,計算CN+CM的值等于
(Ⅱ)當CN+CM取得最小值時,請在如圖②所示的網(wǎng)格中,用無刻度的直尺,畫出線段CN和CM,并簡要說明點M和點N的位置是如何找到的(不要求證明).
【答案】(1)當BN=EM= 時,點N和點M在格點上, ∴CN+CM= + = + ;
⑵如圖所示,取格點P、Q,使得PB=CE,PB⊥BC,QE=CB,QE⊥AC,
連接CP交AB于N,連接CQ交DE于M,則線段CN和CM即為所求.
理由如下:根據(jù)等腰直角三角形ACB與ECD的頂點都在網(wǎng)格點上,可得∠PBN=∠CEM=45°,∠CBN=∠QEM=45°,而BN=EM,
故△BPN≌△ECM,△CBN≌△QEM,
∴PN=CM,CN=QM,
∴當P,N,C三點共線時,CM+CN=PN+CN=PC(最短),
當Q,M,C三點共線時,CM+CN=CM+MQ=QC(最短),
∴點M和點N的位置符合題意
【解析】(1)根據(jù)當BN=EM= 時,點N和點M在格點上,運用勾股定理進行計算即可得到CN+CM的值;(2)取格點P、Q,使得PB=CE,PB⊥BC,QE=CB,QE⊥AC,連接CP交AB于N,連接CQ交DE于M,則根據(jù)全等三角形的對應(yīng)邊相等,以及兩點之間線段最短,可得線段CN和CM即為所求.
【考點精析】本題主要考查了勾股定理的概念的相關(guān)知識點,需要掌握直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2才能正確解答此題.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,O為直線AB上一點,∠AOC=50°,OD平分∠AOC,∠DOE=90°.
(1)請你數(shù)一數(shù),圖中有多少個小于平角的角;
(2)求出∠BOD的度數(shù);
(3)請通過計算說明OE是否平分∠BOC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分12分)如圖,直線l1的解析表達式為:,且l1與x軸
交于點D,直線l2經(jīng)過點A,B,直線l1,l2交于點C.
【1】(1)求直線l2的函數(shù)關(guān)系式;
【2】(2)求△ADC的面積;
【3】(3)若點H為坐標平面內(nèi)任意一點,在坐標平面內(nèi)是否存在這樣的點H,使以A、D、C、H為頂點的四邊形是平行四邊形?若存在,請直接寫出點H的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】解放橋是天津市的標志性建筑之一,是一座全鋼結(jié)構(gòu)的部分可開啟的橋梁. (Ⅰ)如圖①,已知解放橋可開啟部分的橋面的跨度AB等于47m,從AB的中點C處開啟,則AC開啟至AC′的位置時,AC′的長為 m;
(Ⅱ)如圖②,某校數(shù)學(xué)興趣小組要測量解放橋的全長PQ,在觀景平臺M處測得∠PMQ=54°,沿河岸MQ前行,在觀景平臺N處測得∠PNQ=73°,已知PQ⊥MQ,MN=40m,求解放橋的全長PQ(tan54°≈1.4,tan73°≈3.3,結(jié)果保留整數(shù)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將長方形紙片按如圖所示的方式折疊,BC、BD為折痕.若∠ABC=25°,則∠DBE的度數(shù)為( )
A. 50° B. 65° C. 45° D. 60°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,點E、F分別為AB、CD上的點,且AE=CF= AB,點O為線段EF的中點,過點O作直線與正方形的一組對邊分別交于P、Q兩點,并且滿足PQ=EF,則這樣的直線PQ(不同于EF)有條.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,C、D是線段AB上兩點,已知AC:CD:DB=1:2:3,M、N分別為AC、DB的中點,且AB=12cm,
(1)求線段CD的長;
(2)求線段MN的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某修理廠需要購進甲、乙兩種配件,經(jīng)調(diào)查,每個甲種配件的價格比每個乙種配件的價格少0.4萬元,且用16萬元購買的甲種配件的數(shù)量與用24萬元購買的乙種配件的數(shù)量相同.
(1)求每個甲種配件、每個乙種配件的價格分別為多少萬元;
(2)現(xiàn)投入資金80萬元,根據(jù)維修需要預(yù)測,甲種配件要比乙種配件至少要多22件,問乙種配件最多可購買多少件.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在△ABC中,DE、DF是△ABC的中位線,連接EF、AD,其交點為O.求證:
(1)△CDE≌△DBF;
(2)OA=OD.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com