【題目】某電器超市銷售每臺進價分別為200元、170元的A、B兩種型號的電風(fēng)扇,下表是近兩周的銷售情況:
(進價、售價均保持不變,利潤 = 銷售收入-進貨成本)
(1)求A、B兩種型號的電風(fēng)扇的銷售單價;
(2)若超市準(zhǔn)備用不多于5400元的金額再采購這兩種型號的電風(fēng)扇共30臺,求A種型號的電風(fēng)扇最多能采購多少臺?
(3)在(2)的條件下,超市銷售完這30臺電風(fēng)扇能否實現(xiàn)利潤為1400元的目標(biāo)?若能,請給出相應(yīng)的采購方案;若不能,請說明理由.
【答案】(1)A、B兩種型號電風(fēng)扇的銷售單價分別為250元、210元;(2)超市最多采購A種型號電風(fēng)扇10臺時,采購金額不多于5400元;(3)超市不能實現(xiàn)利潤1400元的目標(biāo);
【解析】
(1)根據(jù)第一周和第二周的銷售量和銷售收入,可列寫2個等式方程,再求解二元一次方程組即可;
(2)利用不多于5400元這個量,列寫不等式,得到A型電風(fēng)扇a臺的一個取值范圍,從而得出a的最大值;
(3)將B型電風(fēng)扇用(30-a)表示出來,列寫A、B兩型電風(fēng)扇利潤為1400的等式方程,可求得a的值,最后在判斷求解的值是否滿足(2)中a的取值范圍即可
解:(1)設(shè)A、B兩種型號電風(fēng)扇的銷售單價分別為x元、y元,
依題意得:,解得:,
答:A、B兩種型號電風(fēng)扇的銷售單價分別為250元、210元.
(2)設(shè)采購A種型號電風(fēng)扇a臺,則采購B種型號電風(fēng)扇(30-a)臺.
依題意得:200a+170(30-a)≤5400,解得:a≤10.
答:超市最多采購A種型號電風(fēng)扇10臺時,采購金額不多于5400元;
(3)依題意有:(250-200)a+(210-170)(30-a)=1400,
解得:a=20,∵a≤10,
∴在(2)的條件下超市不能實現(xiàn)利潤1400元的目標(biāo).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=ax2+bx﹣8(a≠0)的對稱軸是直線x=1,
(1)求證:2a+b=0;
(2)若關(guān)于x的方程ax2+bx﹣8=0,有一個根為4,求方程的另一個根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,BC=6cm,AC=8cm,點P從點C開始沿射線CA方向以1cm/s的速度運動;同時,點Q也從點C開始沿射線CB方向以3cm/s的速度運動.
(1)幾秒后△PCQ的面積為3cm2?此時PQ的長是多少?(結(jié)果用最簡二次根式表示)
(2)幾秒后以A、B、P、Q為頂點的四邊形的面積為22cm2?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,AD=4,點E是對角線AC上一點,連接DE,過點E作EF⊥ED,交AB于點F,連接DF,交AC于點G,將△EFG沿EF翻折,得到△EFM,連接DM,交EF于點N,若點F是AB的中點,則△EMN的周長是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】完成下面的證明:已知,如圖,AB∥CD∥GH,EG平分∠BEF,FG平分∠EFD,求證:∠EGF=90°
證明:∵HG∥AB(已知)
∴∠1=∠3
又∵HG∥CD(已知)
∴∠2=∠4
∵AB∥CD(已知)
∴∠BEF+ =180°
又∵EG平分∠BEF(已知)
∴∠1=∠
又∵FG平分∠EFD(已知)
∴∠2=∠
∴∠1+∠2=( )
∴∠1+∠2=90°
∴∠3+∠4=90° 即∠EGF=90°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一次地震中,某村受地震影響嚴(yán)重,已經(jīng)成為一片廢墟.為重建家園,政府準(zhǔn)備修建在地震中受損的一條公路,若由甲工程隊單獨修需3個月完成,每月耗資12萬元;若由乙工程隊單獨修建需6個月完成,每月耗資5萬元.
(1)請問若由甲、乙兩工程隊合作修建需幾個月完成?共耗資多少萬元?
(2)若由甲、乙兩工程隊先合作,剩下的由乙隊來完成,且恰好歷時4個月完成修建任務(wù),求這樣安排共耗資多少萬元?(時間按整月計算)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長是16,點E在邊AB上,AE=3,點F是邊BC上不與點B,C重合的一個動點,把△EBF沿EF折疊,點B落在B′處.若△CDB′恰為等腰三角形,則DB′的長為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB∥ED,設(shè)∠A+∠E=α,∠B+∠C+∠D=β,則( )
A. α-β=0B. 2α-β=0C. α-2β=0D. 3α-2β=0
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一艘船由A港沿北偏東60°方向航行10km至B港,然后再沿北偏西30°方向航行10km至C港.
(1)求A,C兩港之間的距離(結(jié)果保留到0.1km,參考數(shù)據(jù):≈1.414,≈1.732);
(2)確定C港在A港的什么方向.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com