【題目】如圖,已知AB∥ED,設(shè)∠A+∠E=α,∠B+∠C+∠D=β,則( )
A. α-β=0B. 2α-β=0C. α-2β=0D. 3α-2β=0
【答案】B
【解析】
過點(diǎn)C作CF∥AB,根據(jù)平行的傳遞性可得CF∥ED,由平行線的性質(zhì):兩直線平行,同旁內(nèi)角互補(bǔ),得∠D+∠ DCF=180°,∠B+∠ BCF=180°,∠A+∠ E=180°,從而可得2α-β=0.
過點(diǎn)C作CF∥AB,如圖,
∵AB∥ ED,CF∥ AB,
∴CF∥ED,
∴∠ D+∠ DCF=180°,
∵CF∥AB,
∴∠ B+∠ BCF=180°,
∴∠ β=∠ B+∠ BCD+∠ D=∠ B+∠ B CF+∠ DCF+∠ D=360°,
∵AB∥ED,
∴∠A+∠ E=180°,
∴2α-β=0.
故答案為:B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①所示,ABCD是某公園的平面示意圖,A、B、C、D分別是該公園的四個(gè)入口,兩條主干道AC、BD交于點(diǎn)O,經(jīng)測(cè)量AB=0.5km,AC=1.2km,BD=1km,請(qǐng)你幫助公園的管理人員解決以下問題:
(1)公園的面積為 km2;
(2)如圖②,公園管理人員在參觀了武漢東湖綠道后,為提升游客游覽的體驗(yàn)感,準(zhǔn)備修建三條綠道AN、MN、CM,其中點(diǎn)M在OB上,點(diǎn)N在OD上,且BM=ON(點(diǎn)M與點(diǎn)O、B不重合),并計(jì)劃在△AON與△COM兩塊綠地所在區(qū)域種植郁金香,求種植郁金香區(qū)域的面積;
(3)若修建(2)中的綠道每千米費(fèi)用為10萬元,請(qǐng)你計(jì)算該公園修建這三條綠道投入資金的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某電器超市銷售每臺(tái)進(jìn)價(jià)分別為200元、170元的A、B兩種型號(hào)的電風(fēng)扇,下表是近兩周的銷售情況:
(進(jìn)價(jià)、售價(jià)均保持不變,利潤(rùn) = 銷售收入-進(jìn)貨成本)
(1)求A、B兩種型號(hào)的電風(fēng)扇的銷售單價(jià);
(2)若超市準(zhǔn)備用不多于5400元的金額再采購(gòu)這兩種型號(hào)的電風(fēng)扇共30臺(tái),求A種型號(hào)的電風(fēng)扇最多能采購(gòu)多少臺(tái)?
(3)在(2)的條件下,超市銷售完這30臺(tái)電風(fēng)扇能否實(shí)現(xiàn)利潤(rùn)為1400元的目標(biāo)?若能,請(qǐng)給出相應(yīng)的采購(gòu)方案;若不能,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算:
(1)( ﹣1)﹣1+ ﹣6sin45°+(﹣1)2009 .
(2)cos245°+ ﹣ tan30°.
(3) sin45°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AD是∠BAC的平分線,DE⊥AB于E,F在AC上,且BD=DF.
(1)求證:CF=EB;
(2)試判斷AB與AF,EB之間存在的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】化簡(jiǎn)求值:(1)已知a=,b=-1,求(2a+b)(2a-b)-a(4a-3b)的值.
(2)已知x2-5x=3,求2(x-1)(2x-1)-2(x+1)2+1的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場(chǎng)購(gòu)進(jìn)一批日用品,若按每件5元的價(jià)格銷售,每月能賣出3萬件;若按每件6元的價(jià)格銷售,每月能賣出2萬件,假定每月銷售件數(shù) (件)與價(jià)格 (元/件)之間滿足一次函數(shù)關(guān)系.
(1)試求:y與x之間的函數(shù)關(guān)系式;
(2)這批日用品購(gòu)進(jìn)時(shí)進(jìn)價(jià)為4元,則當(dāng)銷售價(jià)格定為多少時(shí),才能使每月的潤(rùn)最大?每月的最大利潤(rùn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一塊矩形ABCD的空地上劃一塊四邊形MNPQ進(jìn)行綠化.如圖,四邊形的頂點(diǎn)在矩形的邊上,且AN=AM=CP=CQ=xcm,已知矩形的邊BC=200m,邊AB=am,a為大于200的常數(shù),設(shè)四邊形MNPQ的面積為sm2
(1)求S關(guān)于x的函數(shù)關(guān)系式,并直接寫出自變量x的取值范圍.
(2)若a=400,求S的最大值,并求出此時(shí)x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)A、B、P的坐標(biāo)分別為(1,0),(2,5),(4,2).若點(diǎn)C在第一象限內(nèi),且橫坐標(biāo)、縱坐標(biāo)均為整數(shù),P是△ABC的外心,則點(diǎn)C的坐標(biāo)為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com