【題目】如圖,直線軸交于點(diǎn),與軸交于點(diǎn),將線段繞點(diǎn)逆時(shí)針旋轉(zhuǎn)得到線段,雙曲線經(jīng)過點(diǎn).

1)求直線和雙曲線的解析式.

2)平移直線,使它與雙曲線有唯一公共點(diǎn)時(shí),求點(diǎn)的坐標(biāo).

【答案】1,;(2)(-3,6

【解析】

1)根據(jù)待定系數(shù)法即可求出直線AB的解析式,過點(diǎn)軸于,如圖,根據(jù)AAS即可證明,從而得,,進(jìn)而可得點(diǎn)C坐標(biāo),進(jìn)一步即可求出雙曲線的解析式;

2)設(shè)平移后的直線為,根據(jù)題意可知聯(lián)立該直線與雙曲線的解析式組成的方程組只有一個(gè)實(shí)數(shù)解,即△=0,由此可得關(guān)于n的方程,解方程求出n后再解方程即可求出點(diǎn)P坐標(biāo).

解:(1,∴設(shè)直線的解析式為,

將點(diǎn)代入,得,

,

直線的解析式為

過點(diǎn)軸于,如圖,則,

,

,

,

,

,

,

雙曲線的解析式為;

2)設(shè)平移后的直線為,

,得

由題意,得,得n=12(舍去),

此時(shí),

點(diǎn)的坐標(biāo)為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(問題提出):有同樣大小正方形256個(gè),拼成如圖1所示的的一個(gè)大的正方形.請問如果用一條直線穿過這個(gè)大正方形的話,最多可以穿過多少個(gè)小正方形?

(問題探究):我們先考慮以下簡單的情況:一條直線穿越一個(gè)正方形的情況.(如圖2

從圖中我們可以看出,當(dāng)一條直線穿過一個(gè)小正方形時(shí),這條直線最多與正方形上、下、左、右四條邊中的兩個(gè)邊相交,所以當(dāng)一條直線穿過一個(gè)小正方形時(shí),這條直線會(huì)與其中某兩條邊產(chǎn)生兩個(gè)交點(diǎn),并且以兩個(gè)交點(diǎn)為頂點(diǎn)的線段會(huì)全部落在小正方形內(nèi).

這就啟發(fā)我們:為了求出直線最多穿過多少個(gè)小正方形,我們可以轉(zhuǎn)而去考慮當(dāng)直線穿越由小正方形拼成的大正方形時(shí)最多會(huì)產(chǎn)生多少個(gè)交點(diǎn).然后由交點(diǎn)數(shù)去確定有多少根小線段,進(jìn)而通過線段的根數(shù)確定下正方形的個(gè)數(shù).

再讓我們來考慮正方形的情況(如圖3):

為了讓直線穿越更多的小正方形,我們不妨假設(shè)直線右上方至左下方穿過一個(gè)的正方形,我們從兩個(gè)方向來分析直線穿過正方形的情況:從上下來看,這條直線由下至上最多可穿過上下平行的兩條線段;從左右來看,這條直線最多可穿過左右平行的四條線段;這樣直線最多可穿過的大正方形中的六條線段,從而直線上會(huì)產(chǎn)生6個(gè)交點(diǎn),這6個(gè)交點(diǎn)之間的5條線段,每條會(huì)落在一個(gè)不同的正方形內(nèi),因此直線最多能經(jīng)過5個(gè)小正方形.

(問題解決):

1)有同樣大小的小正方形16個(gè),拼成如圖4所示的的一個(gè)大的正方形.如果用一條直線穿過這個(gè)大正方形的話,最多可以穿過_________個(gè)小正方形.

2)有同樣大小的小正方形256個(gè),拼成的一個(gè)大的正方形.如果用一條直線穿過這個(gè)大正方形的話,最多可以穿過___________個(gè)小正方形.

3)如果用一條直線穿過的大正方形的話,最多可以穿過___________個(gè)小正方形.

(問題拓展):

4)如果用一條直線穿過的大長方形的話(如圖5),最多可以穿過個(gè)___________小正方形.

5)如果用一條直線穿過的大長方形的話(如圖6),最多可以穿過___________個(gè)小正方形.

6)如果用一條直線穿過的大長方形的話,最多可以穿過________個(gè)小正方形.

(類比探究):

由二維的平面我們可以聯(lián)想到三維的立體空間,平面中的正方形中四條邊可聯(lián)想到正方體中的正方形的六個(gè)面,類比上面問題解決的方法解決如下問題:

7)如圖7有同樣大小的小正方體8個(gè),拼成如圖所示的的一個(gè)大的正方體.如果用一條直線穿過這個(gè)大正方體的話,最多可以穿過___________個(gè)小正方體.

8)如果用一條直線穿過的大正方體的話,最多可以穿過_________個(gè)小正方體.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,∠ACB90°,ACBC2,D是邊AC的中點(diǎn),CEBDE.若F是邊AB上的點(diǎn),且使AEF為等腰三角形,則AF的長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某鄉(xiāng)鎮(zhèn)實(shí)施產(chǎn)業(yè)扶貧,幫助貧困戶承包了荒山種植某品種蜜柚.到了收獲季節(jié),已知該蜜柚的成本價(jià)為,投人市場銷售時(shí),調(diào)査市場行情,發(fā)現(xiàn)該蜜柚銷售不會(huì)虧本,且每天銷售量 (單位:千克)與銷售單價(jià) (單位: )之間的函數(shù)關(guān)系如圖

(1)的函數(shù)解析式,并寫出的取值范圍;

(2)當(dāng)該品種蜜柚定價(jià)為多少時(shí),每天銷售獲得的利潤最大,最大利潤是多少?

(3)某農(nóng)戶今年共采摘蜜柚4800千克,該品種蜜柚的保質(zhì)期為40天,根據(jù)(2)中獲得最大利潤的方式進(jìn)行銷售,能否銷售完這批蜜柚?請說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】今年新型冠狀病毒肺炎(,簡稱為新冠肺炎)疫情在全球蔓延,我們國家堅(jiān)決打贏這場無硝煙的人民戰(zhàn)爭,我市各單位為同學(xué)們的返校復(fù)學(xué)采取了一系列前所未有的舉措.復(fù)課返校后,為了拉大學(xué)生鍛煉的間距,某學(xué)校決定增購適合獨(dú)立訓(xùn)練的兩種體育器材:跳繩和毽子,原來購進(jìn)根跳繩和個(gè)毽子共需元;購進(jìn)根跳繩和個(gè)鍵子共需元.

1)求跳繩和毽子的售價(jià)原來分別是多少元?

2)學(xué)校計(jì)劃購買跳繩和毽子兩種器材共個(gè),由于受疫情影響,商場決定對(duì)這兩種器材打折銷售,其中跳繩以八折出售,毽子以七五折出售,學(xué)校要求跳繩的數(shù)量不少于毽子數(shù)量的倍,跳繩的數(shù)量不多于根,請你求出學(xué);ㄥX最少的購買方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是小花在一次放風(fēng)箏活動(dòng)中某時(shí)段的示意圖,她在A處時(shí)的風(fēng)箏線(整個(gè)過程中風(fēng)箏線近似地看作直線)與水平線構(gòu)成30°角,線段AA1表示小花身高1.5米,當(dāng)她從點(diǎn)A跑動(dòng)9米到達(dá)點(diǎn)B處時(shí),風(fēng)箏線與水平線構(gòu)成45°角,此時(shí)風(fēng)箏到達(dá)點(diǎn)E處,風(fēng)箏的水平移動(dòng)距離CF10米,這一過程中風(fēng)箏線的長度保持不變,求風(fēng)箏原來的高度C1D

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙、丙三個(gè)家電廠家在廣告中都聲稱,他們的某種電子產(chǎn)品在正常情況下的使用壽命都是年,經(jīng)質(zhì)量檢測部門對(duì)這三家銷售的產(chǎn)品的使用壽命進(jìn)行跟蹤調(diào)查,統(tǒng)計(jì)結(jié)果如下:(單位:年)

甲廠:、、、、、

乙廠:、、、、、、、

丙廠:、、、、、、、

請回答下面問題:

1)填空:

平均數(shù)

眾數(shù)

中位數(shù)

甲廠

_____

乙廠

______

丙廠

______

2)這三個(gè)廠家的銷售廣告分別利用了哪一種表示集中趨勢的特征數(shù);

3)如果你是顧客,你會(huì)買三家中哪一家的電子產(chǎn)品?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,C為∠AOB的邊OA上一點(diǎn),OC=6,N為邊OB上異于點(diǎn)O的一動(dòng)點(diǎn),P是線段CN上一點(diǎn),過點(diǎn)P分別作PQOAOB于點(diǎn)Q,PMOBOA于點(diǎn)M

1)若∠AOB=45°,OM=4,OQ=,求證:CNOB;

2)當(dāng)點(diǎn)N在邊OB上運(yùn)動(dòng)時(shí),四邊形OMPQ始終保持為菱形.

①問:的值是否發(fā)生變化?如果變化,求出其取值范圍;如果不變,請說明理由;

②設(shè)菱形OMPQ的面積為S1,NOC的面積為S2,求的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】平面直角坐標(biāo)系中,正方形OABC如圖放置,反比例函數(shù)的圖像交AB于點(diǎn)D,交BC于點(diǎn)E,已知A,0),∠DOE=30°,則k的值為(

A.B.C.3D.3

查看答案和解析>>

同步練習(xí)冊答案