【題目】(問(wèn)題提出):有同樣大小正方形256個(gè),拼成如圖1所示的的一個(gè)大的正方形.請(qǐng)問(wèn)如果用一條直線穿過(guò)這個(gè)大正方形的話,最多可以穿過(guò)多少個(gè)小正方形?

(問(wèn)題探究):我們先考慮以下簡(jiǎn)單的情況:一條直線穿越一個(gè)正方形的情況.(如圖2

從圖中我們可以看出,當(dāng)一條直線穿過(guò)一個(gè)小正方形時(shí),這條直線最多與正方形上、下、左、右四條邊中的兩個(gè)邊相交,所以當(dāng)一條直線穿過(guò)一個(gè)小正方形時(shí),這條直線會(huì)與其中某兩條邊產(chǎn)生兩個(gè)交點(diǎn),并且以兩個(gè)交點(diǎn)為頂點(diǎn)的線段會(huì)全部落在小正方形內(nèi).

這就啟發(fā)我們:為了求出直線最多穿過(guò)多少個(gè)小正方形,我們可以轉(zhuǎn)而去考慮當(dāng)直線穿越由小正方形拼成的大正方形時(shí)最多會(huì)產(chǎn)生多少個(gè)交點(diǎn).然后由交點(diǎn)數(shù)去確定有多少根小線段,進(jìn)而通過(guò)線段的根數(shù)確定下正方形的個(gè)數(shù).

再讓我們來(lái)考慮正方形的情況(如圖3):

為了讓直線穿越更多的小正方形,我們不妨假設(shè)直線右上方至左下方穿過(guò)一個(gè)的正方形,我們從兩個(gè)方向來(lái)分析直線穿過(guò)正方形的情況:從上下來(lái)看,這條直線由下至上最多可穿過(guò)上下平行的兩條線段;從左右來(lái)看,這條直線最多可穿過(guò)左右平行的四條線段;這樣直線最多可穿過(guò)的大正方形中的六條線段,從而直線上會(huì)產(chǎn)生6個(gè)交點(diǎn),這6個(gè)交點(diǎn)之間的5條線段,每條會(huì)落在一個(gè)不同的正方形內(nèi),因此直線最多能經(jīng)過(guò)5個(gè)小正方形.

(問(wèn)題解決):

1)有同樣大小的小正方形16個(gè),拼成如圖4所示的的一個(gè)大的正方形.如果用一條直線穿過(guò)這個(gè)大正方形的話,最多可以穿過(guò)_________個(gè)小正方形.

2)有同樣大小的小正方形256個(gè),拼成的一個(gè)大的正方形.如果用一條直線穿過(guò)這個(gè)大正方形的話,最多可以穿過(guò)___________個(gè)小正方形.

3)如果用一條直線穿過(guò)的大正方形的話,最多可以穿過(guò)___________個(gè)小正方形.

(問(wèn)題拓展):

4)如果用一條直線穿過(guò)的大長(zhǎng)方形的話(如圖5),最多可以穿過(guò)個(gè)___________小正方形.

5)如果用一條直線穿過(guò)的大長(zhǎng)方形的話(如圖6),最多可以穿過(guò)___________個(gè)小正方形.

6)如果用一條直線穿過(guò)的大長(zhǎng)方形的話,最多可以穿過(guò)________個(gè)小正方形.

(類(lèi)比探究):

由二維的平面我們可以聯(lián)想到三維的立體空間,平面中的正方形中四條邊可聯(lián)想到正方體中的正方形的六個(gè)面,類(lèi)比上面問(wèn)題解決的方法解決如下問(wèn)題:

7)如圖7有同樣大小的小正方體8個(gè),拼成如圖所示的的一個(gè)大的正方體.如果用一條直線穿過(guò)這個(gè)大正方體的話,最多可以穿過(guò)___________個(gè)小正方體.

8)如果用一條直線穿過(guò)的大正方體的話,最多可以穿過(guò)_________個(gè)小正方體.

【答案】17;(231;(3;(44;(56 ;(6;(74;(8

【解析】

1)為了讓直線穿越更多的小正方形,我們不妨假設(shè)直線L右上方至左下方穿過(guò)一個(gè)4×4的正方形,我們從兩個(gè)方向來(lái)分析直線l穿過(guò)4×4正方形的情況:從上下來(lái)看,這條直線由下至上最多可穿過(guò)上下平行的3條線段;從左右來(lái)看,這條直線最多可穿過(guò)左右平行的5條線段;這樣直線L最多可穿過(guò)4×4的大正方形中的8條線段,從而直線L上會(huì)產(chǎn)生8個(gè)交點(diǎn),這8個(gè)交點(diǎn)之間的7條線段,這樣就不難得到答案.

2)應(yīng)用規(guī)律2n-1得到答案.

3)應(yīng)用規(guī)律2n-1得到答案.

4)應(yīng)用規(guī)律2n-1得到答案.

5)我們不妨假設(shè)直線L右上方至左下方穿過(guò)一個(gè)2×3的正方形,我們從兩個(gè)方向來(lái)分析直線l穿過(guò)2×3正方形的情況:從上下來(lái)看,這條直線由下至上最多可穿過(guò)上下平行的1條線段;從左右來(lái)看,這條直線最多可穿過(guò)左右平行的4條線段;這樣直線L最多可穿過(guò)2×3的大正方形中的5條線段,從而直線L上會(huì)產(chǎn)生5個(gè)交點(diǎn),這5個(gè)交點(diǎn)之間的4條線段,每條會(huì)落在一個(gè)不同的正方形內(nèi),因此直線L最多能經(jīng)過(guò)4個(gè)小正方形.

6)不妨假設(shè)直線L右上方至左下方穿過(guò)一個(gè)3×4的正方形,我們從兩個(gè)方向來(lái)分析直線l穿過(guò)3×4正方形的情況:從上下來(lái)看,這條直線由下至上最多可穿過(guò)上下平行的2條線段;從左右來(lái)看,這條直線最多可穿過(guò)左右平行的5條線段;這樣直線L最多可穿過(guò)4×4的大正方形中的7條線段,從而直線L上會(huì)產(chǎn)生7個(gè)交點(diǎn),這7個(gè)交點(diǎn)之間的6條線段,每條會(huì)落在一個(gè)不同的正方形內(nèi),因此直線L最多能經(jīng)過(guò)6個(gè)小正方形.

7)不妨假設(shè)直線L右上方至左下方穿過(guò)一個(gè)m×n的正方形,我們從兩個(gè)方向來(lái)分析直線l穿過(guò)m×n正方形的情況:從上下來(lái)看,這條直線由下至上最多可穿過(guò)上下平行的(m-1)條線段;從左右來(lái)看,這條直線最多可穿過(guò)左右平行的(n+1)條線段;這樣直線L最多可穿過(guò)4×4的大正方形中的(m+n)條線段,從而直線L上會(huì)產(chǎn)生(m+n)個(gè)交點(diǎn),這m+n個(gè)交點(diǎn)之間的(m+n-1)條線段,每條會(huì)落在一個(gè)不同的正方形內(nèi),因此直線L最多能經(jīng)過(guò)(m+n-1)個(gè)小正方形.

8)用類(lèi)似的方法得到規(guī)律:3n-2.即可解決.

9)根據(jù)規(guī)律3n-2得到答案.

1)再讓我們來(lái)考慮4×4正方形的情況(如圖4):為了讓直線穿越更多的小正方形,我們不妨假設(shè)直線L右上方至左下方穿過(guò)一個(gè)4×4的正方形,我們從兩個(gè)方向來(lái)分析直線l穿過(guò)4×4正方形的情況:從上下來(lái)看,這條直線由下至上最多可穿過(guò)上下平行的3條線段;從左右來(lái)看,這條直線最多可穿過(guò)左右平行的5條線段;這樣直線L最多可穿過(guò)4×4的大正方形中的8條線段,從而直線L上會(huì)產(chǎn)生8個(gè)交點(diǎn),這8個(gè)交點(diǎn)之間的7條線段,每條會(huì)落在一個(gè)不同的正方形內(nèi),因此直線L最多能經(jīng)過(guò)7個(gè)小正方形.

故答案為7

2)我們發(fā)現(xiàn)直線穿越1×1正方形時(shí)最多經(jīng)過(guò)1個(gè)正方形,直線穿越2×2正方形時(shí)最多經(jīng)過(guò)3個(gè)正方形,直線穿越3×3正方形時(shí)最多經(jīng)過(guò)5個(gè)正方形,

直線穿越4×4正方形時(shí)最多經(jīng)過(guò)7個(gè)正方形,直線穿越n×n正方形時(shí)最多經(jīng)過(guò)2n-1個(gè)正方形.

∴直線穿越10×10正方形時(shí)最多經(jīng)過(guò)19個(gè)正方形.

故答案為19

3)由(2)可知,有2×16-1=31個(gè)正方形,

故答案為31

4)由(2)可知有2n-1個(gè)正方形.

故答案為2n-1

5)為了讓直線穿越更多的小正方形,我們不妨假設(shè)直線L右上方至左下方穿過(guò)一個(gè)2×3的正方形,我們從兩個(gè)方向來(lái)分析直線l穿過(guò)2×3正方形的情況:從上下來(lái)看,這條直線由下至上最多可穿過(guò)上下平行的1條線段;從左右來(lái)看,這條直線最多可穿過(guò)左右平行的4條線段;這樣直線L最多可穿過(guò)2×3的大正方形中的5條線段,從而直線L上會(huì)產(chǎn)生5個(gè)交點(diǎn),這5個(gè)交點(diǎn)之間的4條線段,每條會(huì)落在一個(gè)不同的正方形內(nèi),因此直線L最多能經(jīng)過(guò)4個(gè)小正方形,

故答案為4

6)為了讓直線穿越更多的小正方形,我們不妨假設(shè)直線L右上方至左下方穿過(guò)一個(gè)3×4的正方形,我們從兩個(gè)方向來(lái)分析直線l穿過(guò)3×4正方形的情況:從上下來(lái)看,這條直線由下至上最多可穿過(guò)上下平行的2條線段;從左右來(lái)看,這條直線最多可穿過(guò)左右平行的5條線段;這樣直線L最多可穿過(guò)4×4的大正方形中的7條線段,從而直線L上會(huì)產(chǎn)生7個(gè)交點(diǎn),這7個(gè)交點(diǎn)之間的6條線段,每條會(huì)落在一個(gè)不同的正方形內(nèi),因此直線L最多能經(jīng)過(guò)6個(gè)小正方形.

故答案為6

7)為了讓直線穿越更多的小正方形,我們不妨假設(shè)直線L右上方至左下方穿過(guò)一個(gè)m×n的正方形,我們從兩個(gè)方向來(lái)分析直線l穿過(guò)m×n正方形的情況:從上下來(lái)看,這條直線由下至上最多可穿過(guò)上下平行的(m-1)條線段;從左右來(lái)看,這條直線最多可穿過(guò)左右平行的(n+1)條線段;這樣直線L最多可穿過(guò)4×4的大正方形中的(m+n)條線段,從而直線L上會(huì)產(chǎn)生(m+n)個(gè)交點(diǎn),這m+n個(gè)交點(diǎn)之間的(m+n-1)條線段,每條會(huì)落在一個(gè)不同的正方形內(nèi),因此直線L最多能經(jīng)過(guò)(m+n-1)個(gè)小正方形,

故答案為(m+n-1).

8)用類(lèi)似的方法可以得到:用一條直線穿過(guò)1×1×1正方體的話,最多可以穿過(guò)1個(gè)小正方體,用一條直線穿過(guò),2×2×2正方體的話,最多可以穿過(guò)4個(gè)小正方體,用一條直線穿過(guò),3×3×3正方體的話,最多可以穿過(guò)7個(gè)小正方體,用一條直線穿過(guò)4×4×4正方體的話,最多可以穿過(guò)10個(gè)小正方體,用一條直線穿過(guò),n×n×n正方體的話,最多可以穿過(guò)(3n-2)個(gè)小正方體.

故答案為4

9)由(8)可知有(3n-2)個(gè)正方形,

故答案為(3n-2).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于四個(gè)數(shù),,及四種運(yùn)算,,,列算式解答:

1)求這四個(gè)數(shù)的和;

2)在這四個(gè)數(shù)中選出兩個(gè)數(shù),按要求進(jìn)行下列計(jì)算,使得:

①兩數(shù)差的結(jié)果最。

②兩數(shù)積的結(jié)果最大;

3)在這四個(gè)數(shù)中選出三個(gè)數(shù),在四種運(yùn)算中選出兩種,組成一個(gè)算式,使運(yùn)算結(jié)果等于沒(méi)選的那個(gè)數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,為直徑,過(guò)點(diǎn)的直線相交于點(diǎn)是弦延長(zhǎng)線上一點(diǎn),的平分線與分別相交于點(diǎn),,的中點(diǎn),過(guò)點(diǎn),與,的延長(zhǎng)線分別交于點(diǎn),

1)求證:的切線;

2)若,

①求的半徑;

②連接,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為向明中學(xué)提供午餐的某送餐公司計(jì)劃每月最后一天推出學(xué)生“驚喜套餐”,現(xiàn)做出幾款套餐后打算每班邀請(qǐng)一位學(xué)生代表來(lái)品嘗.初三(6)班有44(學(xué)號(hào)從144號(hào)),班長(zhǎng)設(shè)計(jì)了一個(gè)推選本班代表的辦法:從一副撲克牌中選取了分別標(biāo)有數(shù)字1、23、4的四張牌.先抽取一張牌記下數(shù)字后,放回洗勻;再抽取一張牌記下數(shù)字,兩個(gè)數(shù)字依次組成學(xué)生代表的學(xué)號(hào).比如第一張抽到1,第二張抽到4,就是學(xué)號(hào)為14的這個(gè)同學(xué)作為本班代表.

1)如果小林的學(xué)號(hào)為23,請(qǐng)用列表法或畫(huà)出樹(shù)狀圖的方法,求出他被抽到的概率;

2)對(duì)初三(6)班的每位同學(xué)來(lái)說(shuō),班長(zhǎng)設(shè)計(jì)的辦法是否公平?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下表記錄了甲、乙、丙、丁四名同學(xué)最近幾次數(shù)學(xué)考試成績(jī)的平均數(shù)與方差.根據(jù)表中數(shù)據(jù),要從中選擇一名成績(jī)好且發(fā)揮穩(wěn)定的同學(xué)參加數(shù)學(xué)競(jìng)賽,應(yīng)該選擇__________(填, , ).

平均數(shù)(分)

92

95

95

92

方差

3.6

3.6

7.4

8.1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某超市一段時(shí)期內(nèi)對(duì)某種商品經(jīng)銷(xiāo)情況進(jìn)行統(tǒng)計(jì)得到該商品的銷(xiāo)售數(shù)量(件)由基礎(chǔ)銷(xiāo)售量與浮動(dòng)銷(xiāo)售量?jī)蓚(gè)部分組成,其中基本銷(xiāo)售量保持不變,浮動(dòng)銷(xiāo)售量與售價(jià)(元/件,)成反比例,銷(xiāo)售過(guò)程中得到的部分?jǐn)?shù)據(jù)如下:

售價(jià)

8

10

銷(xiāo)售數(shù)量

70

58

1)求之間的函數(shù)關(guān)系式;

2)當(dāng)該商品銷(xiāo)售數(shù)量為50件時(shí),求每件商品的售價(jià);

3)設(shè)銷(xiāo)售總額為,求的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD的邊CD在正方形ECGF的邊CE上,連接DG,過(guò)點(diǎn)AAHDG,交BG于點(diǎn)H.連接HF,AF,其中AFEC于點(diǎn)M

1)求證:△AHF為等腰直角三角形.

2)若AB3,EC5,求EM的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某學(xué)校旗桿AB旁邊有一個(gè)半側(cè)的時(shí)鐘模型,時(shí)鐘的9點(diǎn)和3點(diǎn)的刻度線剛好和地面重合,半圓的半徑2m,旗桿的底端A到鐘面9點(diǎn)刻度C的距離為11m,一天小明觀察到陽(yáng)光下旗桿頂端B的影子剛好投到時(shí)鐘的11點(diǎn)的刻度上,同時(shí)測(cè)得1米長(zhǎng)的標(biāo)桿的影長(zhǎng)1.2m.求旗桿AB的高度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線軸交于點(diǎn),與軸交于點(diǎn),將線段繞點(diǎn)逆時(shí)針旋轉(zhuǎn)得到線段,雙曲線經(jīng)過(guò)點(diǎn).

1)求直線和雙曲線的解析式.

2)平移直線,使它與雙曲線有唯一公共點(diǎn)時(shí),求點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案