【題目】如圖,在9×9的方格(每小格邊長為1個單位)中,有格點A,B現(xiàn)點A沿網(wǎng)格線跳動規(guī)定:向右跳動一格需要m秒,向上跳動一格需要n秒,且每次跳動后均落在格點上.

1)點A跳到點B,需要     (用含m,n的代數(shù)式表示)

2)已知m=1,n=2

若點A向右跳動3秒,向上跳動10秒到達點C,請在圖中標出點C的位置,并求出以BC為邊的正方形的面積.

若點A跳動5秒到達點D,請直接寫出點D與點B之間距離的最小值為    

【答案】1(5m+3n);(2C的位置如圖所示,以BC的邊長的正方形的面積為=8;

【解析】

1)根據(jù)題意求出點A跳到點B的時間即可.

2)①由題意確定點C的位置,再計算出BC的長度即可解決問題.

②有三種情形,作出點D的位置即可判斷.

1)∵從點A到點B需要向右跳5格,然后向上跳3格,

∴需要(5m+3n)秒.

故答案為:(5m+3n)

2)①點C的位置如圖所示,BC=2

BC的邊長的正方形的面積為=228

②點D的位置有三種情形,BD的最小值

故答案為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著粵港澳大灣區(qū)建設(shè)的加速推進,廣東省正加速布局以5G等為代表的戰(zhàn)略性新興產(chǎn)業(yè),據(jù)統(tǒng)計,目前廣東5G基站的數(shù)量約1.5萬座,計劃到2020年底,全省5G基站數(shù)是目前的4倍,到2022年底,全省5G基站數(shù)量將達到17.34萬座。

1)計劃到2020年底,全省5G基站的數(shù)量是多少萬座?;

2)按照計劃,求2020年底到2022年底,全省5G基站數(shù)量的年平均增長率。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商店在2015年至2017年期間銷售一種禮盒。2015年,該商店用3 500元購進了這種禮盒并且全部售完;2017年,這種禮盒的進價比2015年下降了11/盒,該商店用2 400元購進了與2015年相同數(shù)量的禮盒也全部售完,禮盒的售價均為60/盒.

(1)2015年這種禮盒的進價是多少元/盒?

(2)若該商店每年銷售這種禮盒所獲利潤的年增長率相同,問年增長率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】設(shè)雙曲線與直線交于,兩點(點在第三象限),將雙曲線在第一象限的一支沿射線的方向平移,使其經(jīng)過點,將雙曲線在第三象限的一支沿射線的方向平移,使其經(jīng)過點,平移后的兩條曲線相交于點,兩點,此時我們稱平移后的兩條曲線所圍部分(如圖中陰影部分)為雙曲線的”,為雙曲線的眸徑.當(dāng)雙曲線的眸徑為6時,的值為__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,平分于點,上一點,經(jīng)過點,分別交于點,,連接于點.

(1)求證:的切線;

(2)設(shè),,試用含的代數(shù)式表示線段的長;

(3)若,,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了美化環(huán)境,建設(shè)宜居成都,我市準備在一個廣場上種植甲、乙兩種花卉.經(jīng)市場調(diào)查,甲種花卉的種植費用(元)與種植面積之間的函數(shù)關(guān)系如圖所示,乙種花卉的種植費用為每平方米100.

(1)直接寫出當(dāng)時,的函數(shù)關(guān)系式;

(2)廣場上甲、乙兩種花卉的種植面積共,若甲種花卉的種植面積不少于,且不超過乙種花卉種植面積的2倍,那么應(yīng)該怎樣分配甲、乙兩種花卉的種植面積才能使種植費用最少?最少總費用為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是某市民健身廣場的平面示意圖,它是由6個正方形拼成的長方形,已知中間最小的正方形的邊長是1米;

1)若設(shè)圖中最大正方形的邊長是米,請用含的代數(shù)式分別表示出正方形的邊長

2)觀察圖形的特點可知,長方形相對的兩邊是相等的(即)請根據(jù)以上結(jié)論,求出的值

3)現(xiàn)沿著長方形廣場的四條邊鋪設(shè)下水管道,由甲、乙工程隊單獨鋪設(shè)分別需要10天、15天完成,如果兩隊從同一位置開始,沿相反的方向同時施工2天后,因甲隊另有任務(wù),余下的工程由乙隊單獨施工,還要多少天完成?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB為⊙O的直徑,點E在⊙O上,∠EAB的平分線交⊙O于點C,過點C作AE的垂線,垂足為D,直線DC與AB的延長線交于點P.

(1)判斷直線PC與⊙O的位置關(guān)系,并說明理由;

(2)若tan∠P=,AD=6,求線段AE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABF≌△CDE.

(1)若∠B=30°,∠DCF=40°,求∠EFC的度數(shù);

(2)若BD=10,EF=2,求BF的長.

查看答案和解析>>

同步練習(xí)冊答案