【題目】已知線段AB,點(diǎn)C在直線AB上,D為線段BC的中點(diǎn).
(1)若AB=8 ,AC=2,求線段CD的長(zhǎng).
(2)若點(diǎn)E是線段AC的中點(diǎn),直接寫出線段DE和AB的數(shù)量關(guān)系是________________.
【答案】(1)3或5;(2)AB=2DE
【解析】
(1)分兩種情況討論,當(dāng)C在點(diǎn)A右側(cè)時(shí),畫出圖形可得BC=AB-AC=6,再根據(jù)D是線段BC的中點(diǎn),可得;當(dāng)C在點(diǎn)A左側(cè)時(shí),畫出圖形可得BC=AB+AC=10,同理可得;
(2)根據(jù)E為線段AC的中點(diǎn),則,再根據(jù)(1)中兩種情況分析得出線段DE的長(zhǎng)度即可得出答案.
解:(1)如圖1,當(dāng)C在點(diǎn)A右側(cè)時(shí),
∵AB=8,AC=2.
∴BC=AB-AC=6
∵D是線段BC的中點(diǎn)
∴
如圖2,當(dāng)C在點(diǎn)A左側(cè)時(shí),
∵AB=8,AC=2.
∴BC=AB+AC=10
∵D是線段BC的中點(diǎn)
∴
綜上所述CD=3或5
(2)由圖1可得當(dāng)E為線段AC的中點(diǎn),則,
∵AB=8
∴AB=2DE
由圖2可得當(dāng)E為線段AC的中點(diǎn),則,
∵AB=8
∴AB=2DE
綜上可得:AB=2DE.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在一筆直的海岸線l上有A、B兩個(gè)觀測(cè)站,AB=2km,從A測(cè)得船C在北偏東45°的方向,從B測(cè)得船C在北偏東22.5°的方向,則船C離海岸線l的距離(即CD的長(zhǎng))為_____km(精確到0.1).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】點(diǎn)P,Q分別從A,B兩點(diǎn)同時(shí)出發(fā),在數(shù)軸上運(yùn)動(dòng),它們的速度分別是2個(gè)單位長(zhǎng)度/s、4個(gè)單位長(zhǎng)度/s,它們運(yùn)動(dòng)的時(shí)間為t s.
(1)如果點(diǎn)P,Q在點(diǎn)A,B之間相向運(yùn)動(dòng),當(dāng)它們相遇時(shí),點(diǎn)P對(duì)應(yīng)的數(shù)是________;
(2)如果點(diǎn)P,Q都向左運(yùn)動(dòng),當(dāng)點(diǎn)Q追上點(diǎn)P時(shí),求點(diǎn)P對(duì)應(yīng)的數(shù);
(3)如果點(diǎn)P,Q在點(diǎn)A,B之間相向運(yùn)動(dòng),當(dāng)PQ=8時(shí),求點(diǎn)P對(duì)應(yīng)的數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某初中學(xué)校欲向高一級(jí)學(xué)校推薦一名學(xué)生,根據(jù)規(guī)定的推薦程序:首先由本年級(jí)200名學(xué)生民主投票,每人只能推薦一人(不設(shè)棄權(quán)票),選出了票數(shù)最多的甲、乙、丙三人.投票結(jié)果統(tǒng)計(jì)如圖一:
其次,對(duì)三名候選人進(jìn)行了筆試和面試兩項(xiàng)測(cè)試.各項(xiàng)成績(jī)?nèi)缦卤硭荆?/span>
測(cè)試項(xiàng)目 | 測(cè)試成績(jī)/分 | ||
甲 | 乙 | 丙 | |
筆試 | 92 | 90 | 95 |
面試 | 85 | 95 | 80 |
圖二是某同學(xué)根據(jù)上表繪制的一個(gè)不完全的條形圖.
請(qǐng)你根據(jù)以上信息解答下列問(wèn)題:
(1)補(bǔ)全圖一和圖二;
(2)請(qǐng)計(jì)算每名候選人的得票數(shù);
(3)若每名候選人得一票記1分,投票、筆試、面試三項(xiàng)得分按照2:5:3的比確定,計(jì)算三名候選人的平均成績(jī),成績(jī)高的將被錄取,應(yīng)該錄取誰(shuí)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為傳承中華優(yōu)秀傳統(tǒng)文化,某校團(tuán)委組織了一次全校名學(xué)生參加的“漢字書寫”大賽,為了解本次大賽的成績(jī),校團(tuán)委隨機(jī)抽取了其中名學(xué)生的成績(jī)(成績(jī)取整數(shù),總分分)作為樣本進(jìn)行統(tǒng)計(jì),制成如下不完整的統(tǒng)計(jì)圖表:
根據(jù)所給信息,解答下列問(wèn)題:
(1)_____,______;
(2)補(bǔ)全頻數(shù)直方圖;
(3)這名學(xué)生成績(jī)的中位數(shù)會(huì)落在______分?jǐn)?shù)段;
(4)若成績(jī)?cè)?/span>分以上(包括分)為“優(yōu)”等,請(qǐng)你估計(jì)該校參加本次比賽的名學(xué)生中成績(jī)?yōu)?/span>“優(yōu)”等的有多少人。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】觀察下列兩個(gè)等式:,給出定義如下:我們稱使等式a﹣b=2ab﹣1成立的一對(duì)有理數(shù)a,b為“同心有理數(shù)對(duì)”,記為(a,b),如:數(shù)對(duì)(1,),(2,),都是“同心有理數(shù)對(duì)”.
(1)數(shù)對(duì)(﹣2,1),(3,)是 “同心有理數(shù)對(duì)”的是__________.
(2)若(a,3)是“同心有理數(shù)對(duì)”,求a的值;
(3)若(m,n)是“同心有理數(shù)對(duì)”,則(﹣n,﹣m) “同心有理數(shù)對(duì)”(填“是”或“不是”),說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD內(nèi)找一點(diǎn)O,使它到四邊形四個(gè)頂點(diǎn)的距離之和OA+OB+OC+OD最小,正確的作法是連接AC、BD交于點(diǎn)O,則點(diǎn)O就是要找的點(diǎn),請(qǐng)你用所學(xué)過(guò)的數(shù)學(xué)知識(shí)解釋這一道理__________________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠AOC與∠BOC互余,OD平分∠BOC,∠AOE=2∠EOC.
(1)若∠AOD=75°,求∠AOE的度數(shù).
(2)若∠DOE=36°,求∠EOC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC是等邊三角形,D為AC邊上的一點(diǎn),DG∥AB,延長(zhǎng)AB到E,使BE=GD,連接DE交BC于F.
(1)求證:GF=BF;
(2)若△ABC的邊長(zhǎng)為a,BE的長(zhǎng)為b,且a,b滿足(a﹣7)2+b2﹣6b+9=0,求BF的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com