【題目】如圖,線段CD在線段AB上,且CD=2,若線段AB的長度是一個正整數(shù),則圖中以A,B,C,D這四點中任意兩點為端點的所有線段長度之和可能是( )
A.28
B.29
C.30
D.31
【答案】B
【解析】解:由題意可得,圖中以A,B,C,D這四點中任意兩點為端點的所有線段長度之和是:AC+CD+DB+AD+CB+AB=(AC+CD+DB)+(AD+CB)+AB=AB+AB+CD+AB=3AB+CD,
∵CD=2,線段AB的長度是一個正整數(shù),AB>CD,
∴當AB=8時,3AB+CD=3×8+2=26,
當AB=9時,3AB+CD=3×9+2=29,
當AB=10時,3AB+CD=3×10+2=32.
故選B.
根據(jù)數(shù)軸和題意可知,所有線段的長度之和是AC+CD+DB+AD+CB+AB,然后根據(jù)CD=2,線段AB的長度是一個正整數(shù),可以解答本題.
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,AB=AC,點D在邊BC所在的直線上,過點D作DF∥AC交直線AB于點F,DE∥AB交直線AC于點E.
(1)當點D在邊BC上時,如圖①,求證:DE+DF=AC.
(2)當點D在邊BC的延長線上時,如圖②;當點D在邊BC的反向延長線上時,如圖③,請分別寫出圖②、圖③中DE,DF,AC之間的數(shù)量關系,不需要證明.
(3)若AC=6,DE=4,則DF的值。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,直線AB上有一點P,點M、N分別為線段PA、PB的中點,AB=14.
(1)若點P在線段AB上,且AP=8,求線段MN的長度;
(2)若點P在直線AB上運動,設AP=x,BP=y,請分別計算下面情況時MN的長度: ①當P在AB之間(含A或B);
②當P在A左邊;
③當P在B右邊;你發(fā)現(xiàn)了什么規(guī)律?
(3)如圖2,若點C為線段AB的中點,點P在線段AB的延長線上,下列結(jié)論:① 的值不變;② 的值不變,請選擇一個正確的結(jié)論并求其值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:二次函數(shù)與軸交于A,B兩點(點A在點B的左側(cè)),點A、點B的橫坐標是一元二次方程的兩個根.
(1)請直接寫出點A、B的坐標,并求出該二次函數(shù)的解析式.
(2)如圖1,在二次函數(shù)對稱軸上是否存在點P,使的周長最小,若存在,請求出點P的坐標;若不存在,請說明理由.
(3)如圖2,連接AC、BC,點Q是線段OB上一個動點(點Q不與點O、B重合). 過點Q作QD∥AC交于BC點D,設Q點坐標(m,0),當面積S最大時,求m的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知三角形兩邊的長分別是2和3,第三邊的長是方程x2-8x+12=0的根,則這個三角形的周長為( )
A. 7B. 11C. 7或11D. 8或9
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】學校組織植樹活動,已知在甲處植樹的有14人,在乙處植樹的有6人,現(xiàn)調(diào)70人去支援.
(1)若要使在甲處植樹的人數(shù)與在乙處植樹的人數(shù)相等,應調(diào)往甲處人.
(2)若要使在甲處植樹的人數(shù)是在乙處植樹人數(shù)的2倍,問應調(diào)往甲、乙兩處各多少人?
(3)通過適當?shù)恼{(diào)配支援人數(shù),使在甲處植樹的人數(shù)恰好是在乙處植樹人數(shù)的n倍(n是大于1的正整數(shù),不包括1.)則符合條件的n的值共有個.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在Rt△ABC中,∠BAC=90°,D是BC的中點,E是AD的中點,過點A作AF∥BC交BE的延長線于點F
(1)求證:△AEF≌△DEB;
(2)證明:四邊形ADCF是菱形;
(3)若AB=4,AC=5,求菱形ADCF的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com