【題目】已知:二次函數(shù)軸交于A,B兩點(點A在點B的左側(cè)),點A、點B的橫坐標是一元二次方程的兩個根.

(1)請直接寫出點A、B的坐標,并求出該二次函數(shù)的解析式.

(2)如圖1,在二次函數(shù)對稱軸上是否存在點P,使的周長最小,若存在,請求出點P的坐標;若不存在,請說明理由.

(3)如圖2,連接AC、BC,點Q是線段OB上一個動點(點Q不與點OB重合). 過點QQDAC交于BCD,設(shè)Q點坐標(m,0),當(dāng)面積S最大時,求m的值.

【答案】(1A(-2,0)、B6,0

2)將A(-2,0)、B60)代入

對稱軸為直線頂點為

3A、B兩點關(guān)于對稱軸對稱,連結(jié)BC交對稱軸于點P,則點P即為所求

B60)、C06) 所以過BC兩點的直線為:

代入,則 P24

4∵Qm,00<m<6 ∴ AQ="2+m " BQ=6-m

QDAC,

當(dāng)時, 的面積最大. m=2

【解析】試題分析:(1)、根據(jù)方程求出求出AB兩點的坐標,將A、B兩點坐標代入解析式求出解析式;(2)、根據(jù)軸對稱的性質(zhì)作出點P,然后求出直線BC的解析式,得出點P的坐標;(3)、根據(jù)題意得出AQBQ的長度,然后求出△ACQ△ABC的面積,根據(jù)三角形相似得出△BDQm之間的函數(shù)關(guān)系式,根據(jù)二次函數(shù)的性質(zhì)求出最值.

試題解析:(1)、A(-20)、B6,0),將A(-2,0)、B6,0)代入

2)、A、B兩點關(guān)于對稱軸對稱,連結(jié)BC交對稱軸于點P,則點P即為所求.

B6,0)、C0,6) 所以過BC兩點的直線為:

代入,則 P24

3)、∵Qm,00<m<6 ∴ AQ=2+m BQ=6-m

QDAC,

當(dāng)時, 的面積最大. m=2 .

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,點O是邊AC上一個動點,過O作直線MN∥BC.設(shè)MN交∠ACB的平分線于點E,交∠ACB的外角平分線于點F.
(1)求證:OE=OF;
(2)若CE=8,CF=6,求OC的長;
(3)當(dāng)點O在邊AC上運動到什么位置時,四邊形AECF是矩形?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,已知點A(3,4),將OA繞坐標原點O逆時針旋轉(zhuǎn)90°至OA′,則點A′的坐標是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列運算正確的是(  )

A. 2aa1B. 2a+b2ab

C. a43a7D. (﹣a2(﹣a3=﹣a5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,出租車是人們出行的一種便利交通工具,折線ABC是在我市乘出租車所付車費y(元)與行車里程x(km)之間的函數(shù)關(guān)系圖象.
(1)根據(jù)圖象,當(dāng)x≥3時y為x的一次函數(shù),請寫出函數(shù)關(guān)系式;
(2)某人乘坐13km,應(yīng)付多少錢?
(3)若某人付車費42元,出租車行駛了多少千米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,線段CD在線段AB上,且CD=2,若線段AB的長度是一個正整數(shù),則圖中以A,B,C,D這四點中任意兩點為端點的所有線段長度之和可能是(
A.28
B.29
C.30
D.31

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某九年級制學(xué)校圍繞“每天30分鐘的大課間,你最喜歡的體育活動項目是什么?(只寫一項)”的問題,對在校學(xué)生進行隨機抽樣調(diào)查,從而得到一組數(shù)據(jù).圖1是根據(jù)這組數(shù)據(jù)繪制的條形統(tǒng)計圖,請結(jié)合統(tǒng)計圖回答下列問題:

(1)該校對多少學(xué)生進行了抽樣調(diào)查?
(2)本次抽樣調(diào)查中,最喜歡籃球活動的有多少?占被調(diào)查人數(shù)的百分比是多少?
(3)若該校九年級共有200名學(xué)生,圖2是根據(jù)各年級學(xué)生人數(shù)占全校學(xué)生總?cè)藬?shù)的百分比繪制的扇形統(tǒng)計圖,請你估計全校學(xué)生中最喜歡跳繩活動的人數(shù)約為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一元二次方程x2﹣6x﹣5=0兩根為a、b,則
①a+b=
②ab=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算:(1)(-5a2b)(-3a);

(2)(2x3y)2·x3y+(-14x6)·(-xy)3.

查看答案和解析>>

同步練習(xí)冊答案